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• Geometric Perspectives 
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Boltzmann Machines

[Ackley, Hinton, Sejnowski ’85] [Geman & Geman ’84]
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Figure 1: Standard sigmoid function.

1.1 Gibbs Sampling in Boltzmann Machines

We consider a finite graph G = ([N ], E) with vertex set [N ] := {1, . . . , N},
N < 1, and edge set E ✓ �[N ]

2

�
. We associate a binary unit to each vertex

i 2 [N ] and denote its states by x

i

2 X
i

:= {0, 1}. The joint states of all units
are vectors x = (x1, . . . , xN

) 2 X := {0, 1}N . We attach an interaction weight

W

ij

2 R to each edge {i, j} 2 E and a bias b

i

2 R to each unit i 2 [N ]. We will
denote by @(i) := {j 2 [N ] : {i, j} 2 E} the set of neighbors of i 2 [N ].

The activation potential of unit i, depending on the states of its neighbors,
it given by

H
i

(x
@(i)) :=

X

j : {i,j}2E

W

ij

x

j

+ b

i

. (1)

The sigmoid function is defined as

sigm(s) :=
1

1 + exp(�s)
. (2)

Note that 1� sigm(s) = sigm(�s).

The Boltzmann machine updates the states of its units in discrete time steps
as follows. Let xt 2 X denote the joint state at the current time step. In order
to generate the joint state x

t+1 at the next time step, the Boltzmann machine
selects a unit i 2 [N ] (e.g., uniformly at random) and sets x

t+1
i

= 1 with
probability

Pr(xt+1
i

= 1|xt) = sigm(H
i

(xt)), (3)

or it sets xt+1
i

= 0 with complementary probability

Pr(xt+1
i

= 0|xt) = 1� sigm(H
i

(xt)) = sigm(�H
i

(xt)). (4)
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Figure 2: Example of a Boltzmann machine with input and

output visible units.
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Figure 3: Example of a Boltzmann machine.
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Figure 4: Example of a Boltzmann machine.
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Figure 2: Example of a Boltzmann machine with input and

output visible units.
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Figure 3: Example of a Boltzmann machine.
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Figure 4: Example of a Boltzmann machine.
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1 Boltzmann machines

A Boltzmann machine is a network of stochastic units.

It defines a set of probability vectors

p✓(x) = exp

0

@
X

i

✓ixi +
X

i<j

✓ijxixj �  (✓)

1

A , x 2 {0, 1}N,

for all ✓ 2 Rd.

At discrete times, a unit is chosen at random and its state is

updated with

Pr(xi = 1|x) = �
⇣X

j

✓jixj + ✓i
⌘

where

�(s) =
1

1 + exp(�s)
.

For x = (xV , xH) 2 {0, 1}V+H , consider the set of probability

vectors

p✓(xV ) =
X

xH

p✓(xV , xH), xV 2 {0, 1}V ,

for all ✓ 2 Rd.
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[Montufar, Zahedi, Ay ’15]

Stochastic ControllerClassification

Generative Models

Learning Modules  
for Deep Belief Networks

Modeling Temporal Sequences

Learning Representations Structured Output Prediction

Recommender Systems
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Figure 9: Same description as Figure 8, but here we use CRBMs as policy models. CRBMs are
binary graphical models with hidden units, as depicted in the lower left.
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Figure 1: Graphical representation of a discrete DBN probability model. Each node
represents a unit with the indicated state space. The top two layers have undirected
connections; they correspond to the term p

L�1,L

described in eq. (2). All other layers
receive directed connections, corresponding to the terms p

l

, l 2 [L � 2] described in
eq. (3). Only the bottom layer is visible.

models can be seen as representatives of the same class of probability models.

This paper is organized as follows. Section 2 gives formal definitions, before we
proceed to state our main result Theorem 2 in Section 3: a bound on the approximation
errors of discrete DBNs. A universal approximation depth bound follows directly. After
this, a discussion of the result is given, together with a sketch of the proof. The proof
entails several steps of independent interest, developed in the next sections. Section 4
addresses the representational power and approximation errors of RBMs with discrete
units. Section 5 studies the models of conditional distributions represented by feed-
forward discrete stochastic networks (DBN layers). Section 6 studies concatenations
of layers of feedforward networks and elaborates on the patterns of probability sharing
steps (transformations of probability distributions) that they can realize. Section 7 con-
cludes the proof of the main theorem and gives a corollary about the expectation value
of the approximation error of DBNs. Section A presents an empirical validation scheme
and tests the approximation error bounds numerically on small networks.
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• The Boltzmann machine defines an e-
linear manifold 

• MLE is the unique m-projection of the  
target distribution to this manifold 

• Natural gradient learning trajectory is the  
m-geodesic to the MLE  

• Stochastic interpretation of natural 
parameters 

B

Q

R

P

⌘P

⌘R

�✓ = ✏G�1(⌘Q � ⌘R)
[Amari, Kurata, Nagaoka ’92]

⌘ = r (✓)
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Abstract

A Boltzmann machine is a network of stochastic units. It defines an

exponential family of probability distributions over the joint states of all

network units, with natural parameters given by pair interaction weights

and biases. When some of the units are hidden, the observable probability

distributions form an interesting geometric object, which has been studied

in information geometry, algebraic statistics, and machine learning. In

this talk I give an overview on these investigations and present new results

regarding the representational power of deep Boltzmann machines and the

identifiability of parameters in restricted Boltzmann machines.

1 Boltzmann machines

A Boltzmann machine defines a set of probability vectors

p✓(x) = exp

0

@
X

i

✓ixi +
X

i<j

✓ijxixj �  (✓)

1

A , x 2 {0, 1}N ,

for all ✓ 2 Rd.

For x = (xV , xH) 2 {0, 1}V+H , consider the set of probability vectors

p✓(xV ) =
X

xH

p✓(xV , xH), xV 2 {0, 1}V ,

for all ✓ 2 Rd.

p✓(xV ) =
X

xH

exp

0

@
X

i

✓ixi +
X

i<j

✓ijxixj �  (✓)

1

A , xV 2 {0, 1}V

1

Without hidden units



• The Boltzmann machine defines a 
curved manifold with singularities 

• MLE minimizes KL-divergence from 
m-flat data manifold to the e-flat  
fully observable Boltzmann manifold 

• Iterative optimization using m- and e-
projections, EM-algorithm

1.6 Generalized Pythagorean Theorem and Projection Theorem 27

for any neighboring Q. This shows that P̂∗
S is a critical point of Dψ[P : Q], Q ∈ S,

proving the theorem. The dual part is proved similarly. !

It should be noted that the projection theorem gives a necessary condition for the
point P̂∗

S to minimize the divergence, but is not sufficient. The projection or dual
projection can give the maximum or saddle point of the divergence. The following
theorem gives a sufficient condition for the minimality of the projection and its
uniqueness.

Theorem 1.5 When S is a flat submanifold of a dually flat manifold M, the dual
projection of P to S is unique and minimizes the divergence. Dually, when S is a
dual flat submanifold of a dually flat manifold M, the projection of P to S is unique
and minimizes the dual divergence.

Proof The Pythagorean relations (1.112), (1.120) hold for any Q ∈ S. Hence the
projection (dual projection) is unique and minimizes the dual divergence (diver-
gence). !

1.6.3 Divergence Between Submanifolds: Alternating
Minimization Algorithm

When there are two submanifolds K and S in a dually flat M , we define a divergence
between K and S by

D[K : S] = min
P∈K ,Q∈S

D[P : Q] = D
[
P̄ : Q̄

]
. (1.123)

The two points P̄ ∈ K and Q̄ ∈ S are the closest pair between K and S. In order to
obtain the closest pair, the following iterative algorithm, the alternatingminimization
algorithm, is proposed. See Fig. 1.9.

Fig. 1.9 Iterated dual
geodesic projections (em
algorithm) .
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tion gain (Kullback, 1959; Renyi, 1962), is a measure of the distance from 
the distribution given by the P’(V,) to the distribution given by the P(VJ. 
G is zero if and only if the distributions are identical; otherwise it is positive. 

The term P’(VJ depends on the weights, and so G can be altered by 
changing them. To perform gradient descent in G, it is necessary to know 
the partial derivative of G with respect to each individual weight. In most 
cross-coupled nonlinear networks it is very hard to derive this quantity, but 
because of the simple relationships that hold at thermal equilibrium, the 
partial derivative of G is straightforward to derive for our networks. The 
probabilities of global states are determined by their energies (Eq. 6) and the 
energies are determined by the weights (Eq. 1). Using these equations the 
partial derivative of G (see the appendix) is: 

ac -= 
a wij 

- f@G, - PJ 

where pij is the average probability of two units both being in the on state 
when the environment is clamping the states of the visible units, and pi:, as 
in Eq. (7), is the corresponding probability when the environmental input is 
not present and the network is running freely. (Both these probabilities must 
be measured at equilibrium.) Note the similarity between this equation and 
Eq. (7), which shows how changing a weight affects the log probability of a 
single state. 

To minimize G, it is therefore sufficient to observe pi, and pi; when the 
network is at thermal equilibrium, and to change each weight by an amount 
proportional to the difference between these two probabilities: 

A W<j = c@<, - pi;) (10) 

where e scales the size of each weight change. 
A surprising feature of this rule is that it uses only local/y available 

information. The change in a weight depends only on the behavior of the 
two units it connects, even though the change optimizes a global measure, 
and the best value for each weight depends on the values of all the other 
weights. If there are no hidden units, it can be shown that G-space is con- 
cave (when viewed from above) so that simple gradient descent will not get 
trapped at poor local minima. With hidden units, however, there can be 
local minima that correspond to different ways of using the hidden units to 
represent the higher-order constraints that are implicit in the probability 
distribution of environmental vectors. Some techniques for handling these 
more complex G-spaces are discussed in the next section. 

Once G has been minimized the network will have captured as well as 
possible the regularities in the environment, and these regularities will be en- 
forced when performing completion. An alternative view is that the net- 

[Ackley, Hinton, Sejnowski ’85]

[Amari ’16]

184 8 Estimation in the Presence of Hidden Variables

8.1.3 EM Algorithm

The EM algorithm (expectation maximization algorithm) is an iterative algorithm
for obtaining the MLE in a model including hidden variables. It was formulated by
Dempster et al. (1977).We show its geometry due toCsiszár andTusnady (1984), also
by Amari et al. (1992), Byrne (1992) and Amari (1995). It is an application of the em
algorithm from thegeometrical point of view.Webeginwithξ0 as an initial parameter,
and e-project it to D to obtain the conditional distribution q(h| y) = p

(
h

∣∣y; ξ0

)
.

This determines a candidate for the observed distribution in D. We calculate the
conditional expectation of log likelihood to evaluate the likelihood of a new candidate
ξ, given by

L
(
ξ, ξ0

)
= 1

N

∑

i

∫
p

(
h| yi , ξ0

)
log p( yi , h, ξ)dh, (8.23)

for observed data y1, . . . , yN . This is called the E-step, because it calculates the
conditional expectation. This is the e-projection of p

(
y, R, ξ0

)
to D.

We then m-project the new candidate in D to M , to obtain a new candidate ξ1 in
M . This is obtained by maximizing (8.23). It is called the M-step, because it is the
maximization of the log likelihood (8.23). This is the m-projection. We repeat the
procedures. See Fig. 8.2 .

It is easy to prove the following theorem.

Theorem 8.2 The KL-divergence decreases monotonically by repeating the E-step
and the M-step. Hence, the algorithm converges to an equilibrium.

It should be noted that the m-projection is not necessarily unique unless M is
e-flat. Hence, there might exist local minima.

8.1.4 Example: Gaussian Mixture

The parameters to be estimated are the weightsw1, . . . , wk and themeansµ1, . . . ,µk

of component Gaussian distributions, ξ = (wi ,µi ; i = 1, . . . , k). We begin with

Fig. 8.2 EM algorithm

Information Geometric Perspectives

[Amari, Kurata, Nagaoka ’92]
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Abstract

A Boltzmann machine is a network of stochastic units. It defines an

exponential family of probability distributions over the joint states of all

network units, with natural parameters given by pair interaction weights

and biases. When some of the units are hidden, the observable probability

distributions form an interesting geometric object, which has been studied

in information geometry, algebraic statistics, and machine learning. In

this talk I give an overview on these investigations and present new results

regarding the representational power of deep Boltzmann machines and the

identifiability of parameters in restricted Boltzmann machines.

1 Boltzmann machines

A Boltzmann machine defines a set of probability vectors

p✓(x) = exp

0

@
X

i

✓ixi +
X

i<j

✓ijxixj �  (✓)

1

A , x 2 {0, 1}N ,

for all ✓ 2 Rd.

For x = (xV , xH) 2 {0, 1}V+H , consider the set of probability vectors

p✓(xV ) =
X

xH

p✓(xV , xH), xV 2 {0, 1}V ,

for all ✓ 2 Rd.

p✓(xV ) =
X

xH

exp

0

@
X

i

✓ixi +
X

i<j

✓ijxixj �  (✓)

1

A , xV 2 {0, 1}V

1

With hidden units
x = (xV , xH)

[Amari, Kurata, Nagaoka ’92]



Algebraic Geometric Perspectives

• A Boltzmann machine has a polynomial 
parametrization and defines a semialgebraic 
variety in the probability simplex 

• Main invariant of interest is the expected 
dimension and the number of parameters of 
(Zariski) dense models 

• Implicitization: Find an ideal basis that cuts 
out the model from the probability simplex

[Cueto, Tobis, Yu ’10]

2 MARÍA ANGÉLICA CUETO, ENRIQUE A. TOBIS, AND JOSEPHINE YU

in the complete bipartite graph K
m,n

. The main invariant of interest in these models is
the expected dimension, and, furthermore, lower bounds on n such that the probability
distributions are a dense subset of the probability simplex �2m�1. By direct computation,
it is easy to show that F2,2 and F3,2 are dense subsets of the corresponding probability
simplices, so F4,2 is the first interesting example worth studying. Understanding the model
F4,2 can pave the way for the study of restricted Boltzmann machines in general [2].

Figure 1. The model F4,2. Each node represents a binary random variable.

The set of all possible joint probability distributions (X1, X2, X3, X4) that arise in this
way forms a semialgebraic variety M in the probability simplex �15. To simplify our
construction, we disregard the inequalities defining the model and we extend our param-
eterization to the entire a�ne space C16. In other words, we consider the Zariski closure
of the joint probability distributions in C16. As a result of this, we obtain an algebraic
subvariety of C16 which carries the core information of our model. In turn, we projectivize
the model by considering its associated projective variety. This variety is expected to have
codimension one and be defined by a homogeneous polynomial in 16 variables.

Problem. (An Implicitization Challenge, [6, Ch. VI, Problem 7.7]) Find the degree and
the defining polynomial of the model M.

Our main results state that the varietyM is a hypersurface of degree 110 in P15 (Theorem
4.2) and explicitly enumerate all vertices and facets of the polytope (Theorem 4.1). Our
methods are based on tropical geometry. Since the polynomial is multihomogeneous, we
get its multidegree from just one vertex. Interpolation techniques will allow us to compute
the corresponding irreducible homogeneous polynomial in 16 variables, using the lattice
points in the Newton polytope. However, this polytope will turn out to be too big for
interpolation to be practically feasible.

The paper is organized as follows. In Section 2 we describe the parametric form of our
model and we express our variety as the Hadamard square of the first secant of the Segre
embedding P1 ⇥ P1 ⇥ P1 ⇥ P1 ,! P15. In Section 3 we present the tropical interpretation
of our variety. By means of the nice interplay between the construction described in Sec-
tion 2 and its tropicalization, we compute this tropical variety as a collection of cones with
multiplicities. We should remark that we do not obtain a fan structure, but, nonetheless,
our characterization is su�cient to fulfill the goal of the paper. The key ingredient is the
computation of multiplicities by the so called push-forward formula [23, Theorem 3.12]

[Geiger, Meek, Sturmfels ‘06]
[Pistone, Riccomagno, Wynn ‘01] [Garcia, Stillman, Sturmfels ‘05]

[Cueto, Morton, Sturmfels ‘10]

. . .

3 x 3 minors 
 of 2-d flattenings

[Raicu ’11]

One polynomial of degree 110  
and >5.5 trillion monomials

{p 2 � : f(p) = 0, f 2 I}
{p = g(✓) : ✓ 2 Rd} \�
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Abstract

A Boltzmann machine is a network of stochastic units. It defines an

exponential family of probability distributions over the joint states of all

network units, with natural parameters given by pair interaction weights

and biases. When some of the units are hidden, the observable probability

distributions form an interesting geometric object, which has been studied

in information geometry, algebraic statistics, and machine learning. In

this talk I give an overview on these investigations and present new results

regarding the representational power of deep Boltzmann machines and the

identifiability of parameters in restricted Boltzmann machines.

1 Boltzmann machines

A Boltzmann machine defines a set of probability vectors

p✓(x) = exp

0

@
X

i

✓ixi +
X

i<j

✓ijxixj �  (✓)

1

A , x 2 {0, 1}N ,

for all ✓ 2 Rd.

For x = (xV , xH) 2 {0, 1}V+H , consider the set of probability vectors

p✓(xV ) =
X

xH

p✓(xV , xH), xV 2 {0, 1}V ,

for all ✓ 2 Rd.

p✓(xV ) =
X

xH

exp

0

@
X

i

✓ixi +
X

i<j

✓ijxixj �  (✓)

1

A , xV 2 {0, 1}V

1
• Universal Approximation. What is the smallest 

number of hidden units such that any distribution on 
{0,1}V  can be represented to within any desired 
accuracy?    

• Dimension. What is the dimension of the set of 
distributions represented by a fixed network?  

• Approximation errors. MLE, maximum and 
expected KL-divergence, etc.  

• Support sets. Properties of the marginal polytopes. 
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Figure 1: Example of a Boltzmann machine.
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Figure 2: Example of a Boltzmann machine with hidden units.

A Boltzmann machine is a network of stochastic units.
At discrete times, update the state of a random unit with

Pr(xi = 1|x) = �
⇣X

j

✓jixj + ✓i

⌘

where

�(s) =
1

1 + exp(�s)
.
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Various Possible Hierarchies
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[Freund & Haussler ’94] 
Influence Combination Machine

1774 Geoffrey E. Hinton

Figure 1: A visualization of alternating Gibbs sampling. At time 0, the visible
variables represent a data vector, and the hidden variables of all the experts
are updated in parallel with samples from their posterior distribution given the
visible variables. At time 1, the visible variables are all updated to produce a re-
construction of the original data vector from the hidden variables, and then the
hidden variables are again updated in parallel. If this process is repeated suffi-
ciently often, it is possible to get arbitrarily close to the equilibrium distribution.
The correlations ⟨sisj⟩ shown on the connections between visible and hidden
variables are the statistics used for learning in RBMs, which are described in
section 7.

individual experts also have the property that the components of the data
vector are conditionally independent given the hidden state of the expert,
the hidden and visible variables form a bipartite graph, and it is possible to
update all of the components of the data vector in parallel given the hidden
states of all the experts. So Gibbs sampling can alternate between parallel
updates of the hidden and visible variables (see Figure 1). To get an un-
biased estimate of the gradient for the PoE, it is necessary for the Markov
chain to converge to the equilibrium distribution.

Unfortunately, even if it is computationally feasible to approach the equi-
librium distribution before taking samples, there is a second, serious diffi-
culty. Samples from the equilibrium distribution generally have high vari-
ance since they come from all over the model’s distribution. This high vari-
ance swamps the estimate of the derivative. Worse still, the variance in the
samples depends on the parameters of the model. This variation in the vari-
ance causes the parameters to be repelled from regions of high variance even
if the gradient is zero. To understand this subtle effect, consider a horizon-
tal sheet of tin that is resonating in such a way that some parts have strong
vertical oscillations and other parts are motionless. Sand scattered on the
tin will accumulate in the motionless areas even though the time-averaged
gradient is zero everywhere.

3 Learning by Minimizing Contrastive Divergence

Maximizing the log likelihood of the data (averaged over the data distribu-
tion) is equivalent to minimizing the Kullback-Leibler divergence between
the data distribution, P0, and the equilibrium distribution over the visi-

[Hinton ’02]  
Products of Experts

Restricted Boltzmann Machine

5 Proof Universal Approximation

Consider the set of probability vectors

p✓(x) = exp

 
X

�2⇤

✓�
Y

i2�

xi �  (✓)

!
, x 2 {0, 1}V ,

for all ✓ 2 R⇤, where ⇤ is an inclusion closed subset of 2V .

p(x) $ �H(x) =
X

i

✓ixi +
X

i<j

✓ijxixj

p(xV ) $ �F (xV ) = log

0

@
X

xH

exp
⇣X

i

✓ixi +
X

i<j

✓ijxixj

⌘
1

A

=
X

j2H

log
⇣
1 + exp(✓j +
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4 Universal Approximation

Definition. Let H⇤ denote the smallest integer for which any probability dis-
tribution on {0, 1}V can be represented by a restricted Boltzmann machine with
V visible units and H⇤ hidden units to within any desired accuracy.

Let HV := min{H : RBM universal approximator on {0, 1}V }

#parameters = V ·H + V +H

Observation. HV � 2

V �V�1

V+1

.

Theorem (Freund & Haussler, 1994). HV  2V .

Theorem (Le Roux & Bengio, 2010). HV  2V .

Theorem (Younes, 1995). HV  2V � V � 1.

Theorem (M. & Ay, 2011). HV  1

2

2V � 1.
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Definition. Let H⇤ denote the smallest integer for which any

probability distribution on {0, 1}V can be represented by a

restricted Boltzmann machine with V visible units and H⇤

hidden units to within any desired accuracy.
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5 Comparison with Mixtures of Prod-
ucts

Theorem (M. & Ay, 2012). Every probability distribution

on {0, 1}V can be represented by restricted Boltzmann ma-
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Theorem. Let 1  k  V . Every distribution from the k-interaction model Ek
on {0, 1}V can be approximated arbitrarily well by distributions from RBMV,H

whenever H � log(V�1)+1

V+1

Pk
s=2

�V+1

s

�
.

Theorem. Every distribution on {0, 1}V can be approximated arbitrarily well

by distributions from RBMV,H whenever H � 2(log(V�1)+1)

V+1

(2V �(V +1)�1)+1.

Theorem. Every distribution on {0, 1}V can be approximated arbitrarily well

by a mixture of k product distributions if and only if k � 2V�1

.
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4 Comparison with Mixtures of Products

Theorem (M. & Ay, 2012). Every probability distribution on {0, 1}V can be

represented by restricted Boltzmann machine with 2V�1 � 1 hidden units to

within any desired accuracy. This has

V+1

2

2V � 1 parameters.

Theorem (M., 2011). A mixture of H product distributions on V binary vari-

ables can represent any distribution on {0, 1}V to within any desired accuracy

if and only if H � 2V�1

. This has
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Comparison with mixtures of product distributions
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Figure 1: Illustration of a soft-plus computational unit. The possible inputs X = {0, 1}V ,
corresponding to the vertices of the unit V -cube, are mapped to the real line by an a�ne
map x 7! w>x+ c, and then the soft-plus non-linearity f : s 7! log(1 + exp(s)) is applied.

3 Soft-plus Polynomials

Consider a function of the form

� : {0, 1}V ! R; x 7! log(1 + exp(w>x+ c)), (7)

parametrized by w = (wi)i2V 2 RV and c 2 R. We regard � as a soft-plus computational
unit, which integrates each input vector x 2 {0, 1}V into a scalar via x 7! w>x + c and
applies the soft-plus non-linearity f : R ! R

+

; s 7! log(1 + exp(s)). See Figure 1 for an
illustration of this function. In view of Equation (6), the function � corresponds to the
free energy added by one hidden binary variable interacting pairwise with V visible binary
variables. The parameters wi, i 2 V , correspond to the pair interaction weights and c to
the bias of the hidden variable.

What kinds of polynomials on {0, 1}V can be represented by soft-plus units? Following
Equation (5), the polynomial coe�cients of � are given by

KB(w, c) =
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For each B 2 2V this is an alternating sum of the values �(x) of the soft-plus unit on
the input vectors x 2 {0, 1}V with supp(x) ✓ B. In particular, KB is independent of the
parameters wi, i 62 B. We will use the shorthand notation wB for (wi)i2B .

Note that, if wi = 0 for some i 2 V , then KC = 0 for all C 2 2V with i 2 C. In the
following we focus on the description of the possible values of the highest degree coe�cients.
For example, Younes [17] showed that a soft-plus unit can represent a polynomial with an
arbitrary leading coe�cient:

Lemma 1 (Lemma 1 in [17]). Let B ✓ V and wi = 0 for i 62 B. Then, for any JB 2 R,
there is a choice of wB 2 RB and c 2 R such that KB = JB.

The idea of Younes’ proof of Lemma 1 is to choose all non-zero wi of equal magnitude.
This simplifies the calculations and reduces the number of free parameters to one. Our goal
is to show that a soft-plus unit can actually freely model several polynomial coe�cients at
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want to freely control k polynomial coe�cients, we need strictly more than k parameters.
Otherwise, the coe�cients are restricted by some inequalities. This situation is common
in models with hidden variables. In particular, mixture models often require many more
parameters to eliminate such inequalities than expected from näıve parameter counting [8].

It is natural to ask whether it is possible to control other pairs of coe�cients or even larger
groups of coe�cients. We discuss a simple example before proceeding with the analysis of
this problem.

Example 4. Consider a soft-plus unit with two binary inputs. Write f : s 7! log(1+exp(s))
for the soft-plus non-linearity and f

0

= f(c), f
1

= f(w
1

+ c), f
2

= f(w
2

+ c), f
12

=
f(w

1

+ w
2

+ c) for the values of the soft-plus unit on {0, 1}2. From Equation (8) it is easy
to see that

K; = f
0

� 0

K{1} = f
1

� f
0

� �K;

K{2} = f
2

� f
0

� �K;.

Now let us investigate the quadratic coe�cient K{1,2} = f
12

� f
1

� f
2

+ f
0

. Using the
convexity of f we find

0  K{1,2}, if K{1},K{2} � 0

0  K{1,2}  �K{1},�K{2}, if �K{1},�K{2} � 0

�K{1}  K{1,2}  0, if K{1},�K{2} � 0

�K{2}  K{1,2}  0, if �K{1},K{2} � 0.

Hence the computable polynomials have coe�cient triples (K{1},K{2},K{1,2}) enclosed in
a polyhedral region of R3 as depicted in Figure 3. However, any pair (K{1},K{2}) 2 R2 is
possible (for K; large enough).

The next lemma shows that a soft-plus unit can jointly model certain tuples of polynomial
coe�cients corresponding to v � k + 1 monomials of degree k. We call star tuple a set of
the form {B [ {j} : j 2 B0}, where B,B0 ✓ V satisfy B \B0 = ;. Each element of the star
tuple covers the set B. In the Hasse diagram of the power set 2V , the sets B [ {j}, j 2 B0,
are the leaves of a star with root B.

Lemma 5. Consider any B,B0 ✓ V with B \ B0 = ;. Let wi = 0 for i 62 B [ B0. Then,
for any JB[{j} 2 R, j 2 B0, and ✏ > 0, there is a choice of wB[B0 2 RB[B0

and c 2 R such
that |KB[{j} � JB[{j}|  ✏ for all j 2 B0, and |KC |  ✏ for all C 6= B,B [ {j}, j 2 B0.

Proof of Lemma 5. Since wi = 0 for i 62 B [ B0, we have that KC = 0 for all C 6✓ B [ B0.
We choose c = �(|B| � 1

2

)!, wi = ! for all i 2 B, and wj = JB[{j} for j 2 B0. Choosing
! �

P
j2B0 |wj | yields f(

P
i2C wi + c) ⇡ 0 for all C 6◆ B. In this case,

KC ⇡ 0, for all B 6✓ C ✓ B [B0.

Furthermore, for all j 2 B0 we have

KB[{j} ⇡f
⇣X

i2B

wi + wj + c
⌘
� f

⇣X

i2B

wi + c
⌘

=f(JB[{j} +
1

2

!)� f( 1
2

!)

⇡(JB[{j} +
1

2

!)� ( 1
2

!) = JB[{j}.

Similarly, KB[C ⇡ 0 for all C ✓ B0 with |C| � 2. Note that KB ⇡ 1

2

!.

7
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Figure 2: Illustration of Lemma 2. Depicted is for each edge pair (B,B0) the set of
coe�cient pairs (KB ,KB0) 2 R2 of the polynomials

P
C✓V KC

Q
i2C xi expressible as

log(1+ exp(w>x+ c)). Shown is also the set of monomials of partial degree one and degree
at most 4, partially ordered by variable inclusion.

the same time. Our approach to simplify the Möbius inversion formula (8) is to choose the
parameters w and c in such a way that the function � has many zeros. Clearly this can only
be done in an approximate way, since the soft-plus function is strictly positive. Nevertheless,
these approximations can be made arbitrarily accurate, since log(1 + exp(s))  exp(s) is
arbitrarily close to zero for su�ciently large negative values of s.

We call a pair of sets (B,B0) an edge pair or a covering pair when B ) B0 and there
is no set C with B ) C ) B0. The next lemma shows that a soft-plus unit can jointly
model the coe�cients of an edge pair, at least in part. When the maximum degree |B| is at
most 3, the two coe�cients are restricted by an inequality, but when |B| � 4, there are no
such restrictions. The result is illustrated in Figure 2.

Lemma 2. Consider an edge pair (B,B0). Depending on |B|, for any ✏ > 0 there is a
choice of wB 2 RB and c 2 R such that k(KB ,KB0)� (JB , JB0)k  ✏ if and only if

JB0 � 0,�JB , for |B| = 1

JB0 � 0,�JB or JB0  0,�JB , for |B| = 2

JB0 � 0,�JB or JB0  0,�JB , for |B| = 3

(JB , JB0) 2 R2, for |B| � 4.

Proof. This proof is deferred to Appendix A.

Remark 3. If (B,B0) is an edge pair with |B| = 3, then, despite having |B| + 1 = 4
parameters to vary (wi, i 2 B, and c), we can only determine the polynomial coe�cients
KB and KB0 up to a certain inequality. We expect that the same is true in general: If we

6

We show that certain groups of coefficients can be made arbitrary:

K{1}

K{2}

K{1,2}

Figure 3: Illustration of Example 4. Depicted is a region of R3, clipped to [�1, 1]3, which
contains the coe�cient triples (K{1},K{2},K{1,2}) 2 R3 of the polynomials computable by
a soft-plus unit with two binary inputs. This region consists of 4 solid convex cones.

The intuition behind Lemma 5 is simple. When
P

i2B wi + c � 1, the values w>x+ c,
for x with xi = 1, i 2 B, fall in a region where the soft-plus function is nearly linear. In
turn, the soft-plus unit is nearly a linear function of xj , j 2 B0, with coe�cients wj , j 2 B0.

Remark 6. Closely related to soft-plus units are rectified linear units, which compute
functions of the form

' : {0, 1}V ! R; x 7! max{0, w>x+ c}.

In this case the non-linearity is s 7! {0, s}. This reflects precisely the zero/linear behavior of
the soft-plus activation for large negative or positive values of s. Our polynomial descriptions
are based on this behavior and hence they apply both to soft-plus and rectified linear units.

We close this section with a brief discussion of dependencies among coe�cients. The
next proposition gives a perspective on the possible values of the coe�cient KB , depending
on wm, once wB\{m} and c have been fixed.

Proposition 7. Let (B,B0) be an edge pair with B0 = B \ {m} and let JB 2 R. For fixed
wB0 2 RB0

and c 2 R, there is some wm 2 R such that KB = JB if and only if a certain
degree-2|B

0|�1 polynomial in one real variable has a positive root.

Proof of Proposition 7. Observe that

KB(w, c) = KB0(wB0 , c+ wm)�KB0(wB0 , c).

Hence KB = JB if and only if KB0(wB0 , c + wm) = KB0(wB0 , c) + JB =: r. We use the

8
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Figure 1: Illustration of a soft-plus computational unit. The possible inputs X = {0, 1}V ,
corresponding to the vertices of the unit V -cube, are mapped to the real line by an a�ne
map x 7! w>x+ c, and then the soft-plus non-linearity f : s 7! log(1 + exp(s)) is applied.

3 Soft-plus Polynomials

Consider a function of the form

� : {0, 1}V ! R; x 7! log(1 + exp(w>x+ c)), (7)

parametrized by w = (wi)i2V 2 RV and c 2 R. We regard � as a soft-plus computational
unit, which integrates each input vector x 2 {0, 1}V into a scalar via x 7! w>x + c and
applies the soft-plus non-linearity f : R ! R

+

; s 7! log(1 + exp(s)). See Figure 1 for an
illustration of this function. In view of Equation (6), the function � corresponds to the
free energy added by one hidden binary variable interacting pairwise with V visible binary
variables. The parameters wi, i 2 V , correspond to the pair interaction weights and c to
the bias of the hidden variable.
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want to freely control k polynomial coe�cients, we need strictly more than k parameters.
Otherwise, the coe�cients are restricted by some inequalities. This situation is common
in models with hidden variables. In particular, mixture models often require many more
parameters to eliminate such inequalities than expected from näıve parameter counting [8].

It is natural to ask whether it is possible to control other pairs of coe�cients or even larger
groups of coe�cients. We discuss a simple example before proceeding with the analysis of
this problem.

Example 4. Consider a soft-plus unit with two binary inputs. Write f : s 7! log(1+exp(s))
for the soft-plus non-linearity and f
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+ c) for the values of the soft-plus unit on {0, 1}2. From Equation (8) it is easy
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Now let us investigate the quadratic coe�cient K{1,2} = f
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. Using the
convexity of f we find

0  K{1,2}, if K{1},K{2} � 0

0  K{1,2}  �K{1},�K{2}, if �K{1},�K{2} � 0

�K{1}  K{1,2}  0, if K{1},�K{2} � 0

�K{2}  K{1,2}  0, if �K{1},K{2} � 0.

Hence the computable polynomials have coe�cient triples (K{1},K{2},K{1,2}) enclosed in
a polyhedral region of R3 as depicted in Figure 3. However, any pair (K{1},K{2}) 2 R2 is
possible (for K; large enough).

The next lemma shows that a soft-plus unit can jointly model certain tuples of polynomial
coe�cients corresponding to v � k + 1 monomials of degree k. We call star tuple a set of
the form {B [ {j} : j 2 B0}, where B,B0 ✓ V satisfy B \B0 = ;. Each element of the star
tuple covers the set B. In the Hasse diagram of the power set 2V , the sets B [ {j}, j 2 B0,
are the leaves of a star with root B.

Lemma 5. Consider any B,B0 ✓ V with B \ B0 = ;. Let wi = 0 for i 62 B [ B0. Then,
for any JB[{j} 2 R, j 2 B0, and ✏ > 0, there is a choice of wB[B0 2 RB[B0

and c 2 R such
that |KB[{j} � JB[{j}|  ✏ for all j 2 B0, and |KC |  ✏ for all C 6= B,B [ {j}, j 2 B0.

Proof of Lemma 5. Since wi = 0 for i 62 B [ B0, we have that KC = 0 for all C 6✓ B [ B0.
We choose c = �(|B| � 1

2

)!, wi = ! for all i 2 B, and wj = JB[{j} for j 2 B0. Choosing
! �

P
j2B0 |wj | yields f(

P
i2C wi + c) ⇡ 0 for all C 6◆ B. In this case,

KC ⇡ 0, for all B 6✓ C ✓ B [B0.

Furthermore, for all j 2 B0 we have

KB[{j} ⇡f
⇣X

i2B

wi + wj + c
⌘
� f

⇣X

i2B

wi + c
⌘

=f(JB[{j} +
1

2

!)� f( 1
2

!)

⇡(JB[{j} +
1

2

!)� ( 1
2

!) = JB[{j}.

Similarly, KB[C ⇡ 0 for all C ✓ B0 with |C| � 2. Note that KB ⇡ 1

2

!.
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{1, 2, 3, 4}

K{1,2,3}

K{1,2,3,4}

K;

K{1}

Figure 2: Illustration of Lemma 2. Depicted is for each edge pair (B,B0) the set of
coe�cient pairs (KB ,KB0) 2 R2 of the polynomials

P
C✓V KC

Q
i2C xi expressible as

log(1+ exp(w>x+ c)). Shown is also the set of monomials of partial degree one and degree
at most 4, partially ordered by variable inclusion.

the same time. Our approach to simplify the Möbius inversion formula (8) is to choose the
parameters w and c in such a way that the function � has many zeros. Clearly this can only
be done in an approximate way, since the soft-plus function is strictly positive. Nevertheless,
these approximations can be made arbitrarily accurate, since log(1 + exp(s))  exp(s) is
arbitrarily close to zero for su�ciently large negative values of s.

We call a pair of sets (B,B0) an edge pair or a covering pair when B ) B0 and there
is no set C with B ) C ) B0. The next lemma shows that a soft-plus unit can jointly
model the coe�cients of an edge pair, at least in part. When the maximum degree |B| is at
most 3, the two coe�cients are restricted by an inequality, but when |B| � 4, there are no
such restrictions. The result is illustrated in Figure 2.

Lemma 2. Consider an edge pair (B,B0). Depending on |B|, for any ✏ > 0 there is a
choice of wB 2 RB and c 2 R such that k(KB ,KB0)� (JB , JB0)k  ✏ if and only if

JB0 � 0,�JB , for |B| = 1

JB0 � 0,�JB or JB0  0,�JB , for |B| = 2

JB0 � 0,�JB or JB0  0,�JB , for |B| = 3

(JB , JB0) 2 R2, for |B| � 4.

Proof. This proof is deferred to Appendix A.

Remark 3. If (B,B0) is an edge pair with |B| = 3, then, despite having |B| + 1 = 4
parameters to vary (wi, i 2 B, and c), we can only determine the polynomial coe�cients
KB and KB0 up to a certain inequality. We expect that the same is true in general: If we

6

We show that certain groups of coefficients can be made arbitrary:



6 Proof Universal Approximation

Consider the set E
⇤

of probability vectors

q#(xV ) = exp

 
X

�2⇤

#�
Y

i2�

xi �  (#)

!
, xV 2 {0, 1}V ,

for all # 2 R⇤, where ⇤ is an inclusion closed subset of 2V .

q#(xV ) $ �H(x) =
X

�2⇤

#�
Y

i2�

xi $ (#�)�2⇤

2 R⇤, (#�)� 62⇤

= 0

p✓(xV ) =
X

xH

exp
⇣X

i

✓ixi +
X

i2V,j2H

✓ijxixj �  (✓)
⌘
, xV 2 {0, 1}V

p✓(xV ) $ �F (xV ) = log

0

@
X

xH

exp
⇣X

i

✓ixi +
X

i2V,j2H

✓ijxixj

⌘
1

A

=
X

j2H

log
⇣
1 + exp(✓j +

X

i2V

✓ijxi)
⌘

$ (#�(p✓))�22

V =?

�F (x) =
X

j2H

log
⇣
1 + exp(✓j +

X

i2V

✓ijxi)
⌘
=
X

�

#�(✓)
Y

i2�

xi

$ #B(✓) =
X

j2H

X

C✓B

(�1)|B\C| log
⇣
1 + exp(✓j +

X

i2C

✓ij)
⌘
, B 2 2V

'(xV ) = log
⇣
1 + exp(✓j +

X

i2V

✓ijxi)
⌘

=
X

B✓V

Kj,B

Y

i2B

xi

Kj,B =
X

C✓B

(�1)|B\C| log
⇣
1 + exp(✓j +

X

i2C

✓ij)
⌘
, B ✓ V

Theorem. Let 1  k  V . Every distribution from the k-interaction model Ek
on {0, 1}V can be approximated arbitrarily well by distributions from RBMV,H

whenever H � log(V�1)+1

V+1

Pk
s=2

�V+1

s

�
.
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• Each hidden unit adds a linear space of 
coefficients, corresponding to an exponential 
family of dim up to V 

• Adding sufficiently many linear spaces 
produces any hierarchical model 

• Previous proofs added at most 1 or 2 
dimensions per hidden unit ;

{1} {2} {3} {4}

{1, 2} {1, 3} {2, 3} {1, 4} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4}

{1, 2, 3, 4}

Proof V - Coverings

QED
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7 Deep Boltzmann Machine

Theorem. A deep Boltzmann machine with n visible units and L hidden layers

of n units each can represent any probability distribution on {0, 1}n to within

any desired accuracy whenever L � 2

n

2(n�log2(n)�1)

and n = 2k+k+1 for some k.

8 Dimension

Consider M = {p✓ : ✓ 2 Rd} ✓ �N�1

parametrized by � : Rd ! �N�1

; ✓ 7! p✓.

The dimension of M is maximum rank of J�.

Hypersurface of degree 110 in P15

Theorem (Cueto, Morton, Sturmfels, 2010). The restricted Boltzmann ma-

chine has the expected dimension min{V H+V+H, 2V �1} when H  2V�dlog2(V+1)e

and when H � 2V�blog2(V+1)c
.

Conjecture (Cueto, Morton, Sturmfels, 2010). The restricted Boltzmann ma-

chine has the expected dimension, i.e., it is a semialgebraic set of dimension

min{V H + V +H, 2V � 1} in �
2

V �1

.

Theorem (M. & Morton, 2016). The restricted Boltzmann machine has the

expected dimension min{V H + V +H, 2V � 1}.

A Universal Approximation

Theorem (Freund & Haussler, 1994). A Boltzmann machine is universal in

the sense that any distribution on {0, 1}V can be represented by a Boltzmann

machine with V visible units and 2V hidden units to within any desired accuracy.

Theorem (Le Roux & Bengio, 2010). Every probability distribution on {0, 1}V
can be represented by restricted Boltzmann machine with 2V hidden units to

within any desired accuracy.

Theorem (Younes, 1995). Every probability distribution on {0, 1}V is the marginal

of a Boltzmann machine with 2V � V � 1 hidden units.

Theorem (M. & Ay, 2012). Every probability distribution on {0, 1}V can be

represented by restricted Boltzmann machine with 2V�1 � 1 hidden units to

within any desired accuracy.

Theorem (M. & Rauh, 2016). Every probability distribution on {0, 1}V can be

represented by restricted Boltzmann machine with

2(log(V )+1)

V+1

2V �1 hidden units

to within any desired accuracy.
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Dimension

Open cases
GEOMETRY OF THE RESTRICTED BOLTZMANN MACHINE 13

n k � k �

5 22 7
6 23 12
7 24 24

8 22 · 5 25

9 23 · 5 62
10 23 · 9 120
11 24 · 9 192
12 28 380
13 29 736
14 210 1408
15 211 211

16 25 · 85 212

17 26 · 83 213

18 28 · 41 214

19 212 · 5 31744
20 212 · 9 63488
21 213 · 9 122880
22 214 · 9 245760
23 215 · 9 393216
24 219 786432
25 220 1556480
26 221 3112960
27 222 6029312
28 223 12058624
29 224 23068672
30 225 46137344
31 226 226

32 220 · 85 227

33 221 · 85 228

n k �

35 223 · 83
37 226 · 41
39 231 · 5
47 238 · 9
63 257

70 243 · 1657009
71 263 · 3
75 263 · 41
79 270 · 5
95 285 · 9
127 2120

141 2113 · 1657009
143 2134 · 3
151 2138 · 41
159 2149 · 5
163 2151 · 19
191 2180 · 9
255 2247

270 2202 · 1021273028302258913
283 2254 · 1657009
287 2277 · 3
300 2220 · 3348824985082075276195
303 2289 · 41
319 2308 · 5
327 2314 · 19
383 2371 · 9
511 2502

512 2443 · 1021273028302258913

Table 1: Special cases where Conjecture 2.2 holds, based on [5, 22] and Corollary
4.3. Bold entries show improvements made by various researchers on the bounds
provided by Corollary 4.5. For example, for n = 19, TM

k
n has the expected dimen-

sion if k  212 · 5 = 20480 and dimension 2n � 1 if k � 31744, while the Corollary
4.5 bounds are 214 = 16384 and 215 = 32768, respectively. The k  column lists
lower bounds on A2(n, 3) while the k � column lists upper bounds on K2(n, 1).

This implies K2(n, 1)  2n��log2(n+1)�. �

Our method results in the following upper and lower bounds for arbitrary values
of n. Note that the bound is tight if n + 1 is a power of 2. Otherwise there might
be a multiplicative gap of up to 2 between the lower and upper bound. In addition
to these general bounds, we have the specific results recorded in Table 1.

Corollary 4.5. The coding theory argument leads to the following bounds:

• If k < 2n��log2(n+1)�, then dim TM

k
n = nk + n + k.

• If k = 2n��log2(n+1)�, then dim TM

k
n = min{nk + n + k, 2n � 1}.

• If k � 2n��log2(n+1)�, then dim TM

k
n = 2n � 1.
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2
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.
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Proof I - Marginals of Exponential Families

DIMENSION OF MARGINALS OF KRONECKER PRODUCT MODELS 3

dimension of Hadamard products of mixtures of hierarchical models. Section 7 studies the93
general case of Kronecker product hierarchical models. Theorem 24 from Section 7 includes94
the Theorems 16 and Theorem 22 from Sections 5 and 6 as special cases. Section 8 proves that95
binary restricted Boltzmann machines always have the expected dimension, thereby solving96
the dimension question for cases that were left open in [6]. Section 9 discusses the results.97

2. Marginals of Exponential Families. In this section we present basic definitions of98
exponential families and their marginals. We discuss the Jacobian of the natural parametriza-99
tion and relate its behavior in the limit of large parameters with the inference functions of100
the model. This leads us to the definition of the tropical morphism and a simplified rank101
estimation problem.102

Consider two finite sets X and Y . A probability distribution on X ⇥ Y is a real-valued103
vector p 2 RX⇥Y with entries p(x, y) � 0, (x, y) 2 X ⇥ Y , satisfying

P

x,y p(x, y) = 1.104

Consider a function F : X ⇥ Y ! Rd.105

DEFINITION 1. The exponential family EF with sufficient statistics F consists of all106
probability distributions on X ⇥ Y of the form107

p✓(x, y) =
1

Z(✓)

exp(h✓, F (x, y)i), (x, y) 2 X ⇥ Y, ✓ 2 Rd
,108

where h·, ·i denotes the standard inner product and Z : ✓ 7!
P

x0,y0 exp(h✓, F (x

0
, y

0
)i) is109

a normalization function. Note that each distribution in the exponential family has strictly110
positive entries. We will regard F as a matrix with columns F (x, y) 2 Rd, (x, y) 2 X⇥Y . We111
note that the exponential family EF is fully characterized by the row space hRd

, F i ✓ RX⇥Y112
of the sufficient statistics matrix F . More precisely, two matrices F and G produce the same113
exponential family if and only if (F ;1) and (G;1) have the same row span, where 1 is a row114
of ones. From now on we will always assume, without loss of generality, that F includes 1 in115
its row span. The dimension of the exponential family is then dim(EF ) = rank(F )� 1. This116
is the same as the dimension of the convex support polytope conv{F (x, y) : (x, y) 2 X ⇥Y}.117

DEFINITION 2. The marginal model MF on X of the exponential family EF is the set of118
all probability distributions of the form119

p✓(x) =

X

y2Y

1

Z(✓)

exp(h✓, F (x, y)i), x 2 X , ✓ 2 Rd
.120

The marginal model MF is the image of EF by the marginalization map, which is the121
linear map represented by the matrix with rows equal to the indicators 1x 2 RX⇥Y of122
{x} ⇥ Y , for each x 2 X . We are interested in the dimension of MF . When dim(MF ) =123
min{dim(EF ), |X |�1}, we say that MF has the expected dimension, meaning that marginal-124
ization does not collapse the dimension of EF , or that the marginal MF is full dimensional,125
having the same dimension as the simplex �|X |�1

of all probability distributions on X .126

The dimension of MF is equal to the maximum rank of the Jacobian matrix of the127
parametrization ✓ 7! (p✓(x))x. The Jacobian is given by128

(1) JM
F

(✓) =

0

@

X

y

p✓(x, y)F (x, y)�
X

y

p✓(x, y)

X

x0,y0

p✓(x
0
, y

0
)F (x

0
, y

0
)

1

A

x

.129
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the dimension question for cases that were left open in [6]. Section 9 discusses the results.97

2. Marginals of Exponential Families. In this section we present basic definitions of98
exponential families and their marginals. We discuss the Jacobian of the natural parametriza-99
tion and relate its behavior in the limit of large parameters with the inference functions of100
the model. This leads us to the definition of the tropical morphism and a simplified rank101
estimation problem.102

Consider two finite sets X and Y . A probability distribution on X ⇥ Y is a real-valued103
vector p 2 RX⇥Y with entries p(x, y) � 0, (x, y) 2 X ⇥ Y , satisfying

P

x,y p(x, y) = 1.104

Consider a function F : X ⇥ Y ! Rd.105

DEFINITION 1. The exponential family EF with sufficient statistics F consists of all106
probability distributions on X ⇥ Y of the form107

p✓(x, y) =
1

Z(✓)

exp(h✓, F (x, y)i), (x, y) 2 X ⇥ Y, ✓ 2 Rd
,108

where h·, ·i denotes the standard inner product and Z : ✓ 7!
P

x0,y0 exp(h✓, F (x

0
, y

0
)i) is109

a normalization function. Note that each distribution in the exponential family has strictly110
positive entries. We will regard F as a matrix with columns F (x, y) 2 Rd, (x, y) 2 X⇥Y . We111
note that the exponential family EF is fully characterized by the row space hRd

, F i ✓ RX⇥Y112
of the sufficient statistics matrix F . More precisely, two matrices F and G produce the same113
exponential family if and only if (F ;1) and (G;1) have the same row span, where 1 is a row114
of ones. From now on we will always assume, without loss of generality, that F includes 1 in115
its row span. The dimension of the exponential family is then dim(EF ) = rank(F )� 1. This116
is the same as the dimension of the convex support polytope conv{F (x, y) : (x, y) 2 X ⇥Y}.117

DEFINITION 2. The marginal model MF on X of the exponential family EF is the set of118
all probability distributions of the form119

p✓(x) =

X

y2Y

1

Z(✓)

exp(h✓, F (x, y)i), x 2 X , ✓ 2 Rd
.120

The marginal model MF is the image of EF by the marginalization map, which is the121
linear map represented by the matrix with rows equal to the indicators 1x 2 RX⇥Y of122
{x} ⇥ Y , for each x 2 X . We are interested in the dimension of MF . When dim(MF ) =123
min{dim(EF ), |X |�1}, we say that MF has the expected dimension, meaning that marginal-124
ization does not collapse the dimension of EF , or that the marginal MF is full dimensional,125
having the same dimension as the simplex �|X |�1

of all probability distributions on X .126

The dimension of MF is equal to the maximum rank of the Jacobian matrix of the127
parametrization ✓ 7! (p✓(x))x. The Jacobian is given by128

(1) JM
F

(✓) =

0

@

X

y

p✓(x, y)F (x, y)�
X

y

p✓(x, y)

X
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0
, y

0
)F (x

0
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0
)
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The second term corresponds to the normalization function Z. For the rank we have130

rank (JM
F

(✓)) = rank

 

X

y

p✓(x, y)F (x, y)

!

x

� 1131

=rank

 

X

y

p✓(y|x)F (x, y)

!

x

� 1.(2)132

133

The first equality follows from the assumption that F has a constant row. The second one is134
because p✓(x) =

P

y0 p✓(x, y
0
) > 0 for all x. Here p✓(y|x) := p✓(x, y)/

P

y0 p✓(x, y
0
) de-135

notes the conditional probability of y given x. A geometric interpretation is that rank(JM
F

(✓))136
is the dimension of the polytope defined as the convex hull of137

X

y

p✓(y|x)F (x, y), x 2 X .138

Evaluating Equation 2 is difficult, in general. The problem is easier in the limit of large139
parameters, where the sum over y almost always reduces to a single term. To see that this is140
the case, note that multiplicative factors of the parameter ✓ correspond to exponential factors141
of the probability distribution, such that p↵✓(·|x) / p✓(·|x)↵. Therefore, for any ✓ 2 Rd, the142
limit lim↵!1 p↵✓(y|x) is non-zero only for y 2 argmaxy p✓(y|x) = argmaxyh✓, F (x, y)i.143
Following this line of thought, it is convenient to define the function that outputs the most144
likely value of y to any given x:145

DEFINITION 3. The inference function of MF with parameter ✓ 2 Rd is given by146

h✓ : X ! 2

Y
; x 7! h✓(x) = argmaxyh✓, F (x, y)i.147

Here 2

Y denotes the power set of Y . Geometrically, h✓(x) is the set of y 2 Y for which148
F (x, y) lies in the supporting hyperplane of F (x, y), y 2 Y , with normal ✓. The situation is149
illustrated in Figure 1.150

We have the following dimension bounds:151

PROPOSITION 4. The dimension of the marginal model MF satisfies152

rank(F )� 1 = dim(EF ) � dim(MF ) � max

✓
rank

�

¯

F (x, h✓(x))
�

x
� 1,153

where ¯

F (x, h✓(x)) :=
1

|h
✓

(x)|
P

y2h
✓

(x) F (x, y).154

Proof. We have155
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@
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A
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159

The first line is Equation 2. The second line follows from the continuity of the parametriza-160
tion of the exponential family (see Definition 2) and the lower semicontinuity of the rank161
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7 Deep Boltzmann Machine

Theorem. A deep Boltzmann machine with n visible units and L hidden layers

of n units each can represent any probability distribution on {0, 1}n to within

any desired accuracy whenever L � 2

n

2(n�log2(n)�1)

and n = 2k+k+1 for some k.

8 Dimension

Consider M = {p✓ : ✓ 2 Rd} ✓ �N�1

parametrized by � : Rd ! �N�1

; ✓ 7! p✓.

The dimension of M is the maximum rank of the Jacobian J�.

Hypersurface of degree 110 in P15

Theorem (Cueto, Morton, Sturmfels, 2010). The restricted Boltzmann ma-

chine has the expected dimension min{V H+V+H, 2V �1} when H  2V�dlog2(V+1)e

and when H � 2V�blog2(V+1)c
.

Conjecture (Cueto, Morton, Sturmfels, 2010). The restricted Boltzmann ma-

chine has the expected dimension, i.e., it is a semialgebraic set of dimension

min{V H + V +H, 2V � 1} in �
2

V �1

.

Theorem (M. & Morton, 2016). The restricted Boltzmann machine has the

expected dimension min{V H + V +H, 2V � 1}.
Let MF be given by

A Universal Approximation

Theorem (Freund & Haussler, 1994). A Boltzmann machine is universal in

the sense that any distribution on {0, 1}V can be represented by a Boltzmann

machine with V visible units and 2V hidden units to within any desired accuracy.

Theorem (Le Roux & Bengio, 2010). Every probability distribution on {0, 1}V
can be represented by restricted Boltzmann machine with 2V hidden units to

within any desired accuracy.

Theorem (Younes, 1995). Every probability distribution on {0, 1}V is the marginal

of a Boltzmann machine with 2V � V � 1 hidden units.

Theorem (M. & Ay, 2012). Every probability distribution on {0, 1}V can be

represented by restricted Boltzmann machine with 2V�1 � 1 hidden units to

within any desired accuracy.

Theorem (M. & Rauh, 2016). Every probability distribution on {0, 1}V can be

represented by restricted Boltzmann machine with

2(log(V )+1)

V+1

2V �1 hidden units

to within any desired accuracy.

9

expectation parameters of conditional distributions

Dimension is maximum rank of Jacobian matrix



An intuition for the tropical Jacobian
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Tropical Dimension Approach - Intuitive View
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Let MF be given by
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dim(RBMV,H) = max
✓

rank J
RBMV,H

(✓)
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✓
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
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
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✓

rank (F (x, h✓(x)))x
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Structure of the tropical Jacobian
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• Tropical approach is very powerful. In many cases the tropical rank 
is associated to known combinatorial quantities 

• However, many cases it leads to very hard combinatorial problems 

Tropical Dimension Approach - Intuitive View



Proof II
Theorem (Catalisano, Geramita, Gimigliano, 2011 - rephrased). The set of

mixtures of H + 1 product distributions of V binary variables has the expected

dimension min{V H + V +H, 2V � 1}, whenever V � 5.

Lemma. Let A,B,C be su�cient statistics matrices, each containing a con-

stant row. If B describes H independent binary variables and C describes one

categorical variable with H + 1 values, then dim(MA⌦B) � dim(MA⌦C).

Observation. The su�cient statistics matrix of RBMV,H satisfies F (x, y) =
A(x) ⌦ B(y), where A,B describe V and H independent binary variables and

each includes a constant row.

A Universal Approximation

Theorem (Freund & Haussler, 1994). A Boltzmann machine is universal in

the sense that any distribution on {0, 1}V can be represented by a Boltzmann

machine with V visible units and 2V hidden units to within any desired accuracy.

Theorem (Le Roux & Bengio, 2010). Every probability distribution on {0, 1}V
can be represented by restricted Boltzmann machine with 2V hidden units to

within any desired accuracy.

Theorem (Younes, 1995). Every probability distribution on {0, 1}V is the marginal

of a Boltzmann machine with 2V � V � 1 hidden units.

Theorem (M. & Ay, 2012). Every probability distribution on {0, 1}V can be

represented by restricted Boltzmann machine with 2V�1 � 1 hidden units to

within any desired accuracy.

Theorem (M. & Rauh, 2016). Every probability distribution on {0, 1}V can be

represented by restricted Boltzmann machine with

2(log(V )+1)

V+1

2V �1 hidden units

to within any desired accuracy.

B Gibbs Sampling in Boltzmann Machines

We consider a finite graph G = ([N ], E) with vertex set [N ] := {1, . . . , N},
N < 1, and edge set E ✓ �

[N ]

2

�
. We associate a binary unit to each vertex

i 2 [N ] and denote its states by xi 2 Xi := {0, 1}. The joint states of all units
are vectors x = (x

1

, . . . , xN ) 2 X := {0, 1}N . We attach an interaction weight

Wij 2 R to each edge {i, j} 2 E and a bias bi 2 R to each unit i 2 [N ]. We will
denote by @(i) := {j 2 [N ] : {i, j} 2 E} the set of neighbors of i 2 [N ].

The activation potential of unit i, depending on the states of its neighbors,
it given by

Hi(x@(i)) :=
X

j : {i,j}2E

Wijxj + bi. (1)
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Proof III
RBMs and mixtures of products

• For the RBM we have

rank
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RBMs and mixtures of products
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QED

Proof IV



Conclusion
• Boltzmann machines define marginals of exponential families with an 

interesting geometry.  

• I presented new results on two basic questions:  
 
Universal approximation  
RBMs and BMs are universal approximators with significantly less 
parameters than previously known.  
This result also shows that universal approximation with RBMs require 
significantly less parameters than with mixtures of products  
 
Dimension 
RBMs always have the expected dimension.  
This completes the dimension characterization initiated by Cueto, 
Morton, Sturmfels, and resolves their conjecture positively



Open Problems

• Can the universal approximation bounds for restricted Boltzmann 
machines be improved? 

• Do deep Boltzmann machines have the expected dimension?  

• Are less parameters possible with deep Boltzmann machines? 
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