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Boltzmann Machines

A Boltzmann machine is a network of stochastic units.
It defines a set of probability vectors

po(T) = exp Z 0ix; + Z Oiiziz; —P(0) |, z € {0,1}"

1<J

for all 8 € R<.
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[Ackley, Hinton, Sejnowski '85] [Geman & Geman '84]
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Boltzmann Machines

Generative Models Modeling Temporal Sequences

Learning Representations Structured Output Prediction

Learning Modules

for Deep Belief Networks Recommender Systems

Classification Stochastic Controller

[Montufar, Zahedi, Ay '15]
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Information Geometric Perspectives

Without hidden units

po(T) = exp (Z 0;z; + Z Oijxix; — ¢(9)>

i<j

The Boltzmann machine defines an e-
linear manifold

 MLE is the unique m-projection of the
target distribution to this manifold

« Natural gradient learning trajectory is the

L — — m-geodesic to the MLE
= V¢(9) « Stochastic interpretation of natural

parameters

[Amari, Kurata, Nagaoka '92]



Information Geometric Perspectives
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[Ackley, Hinton, Sejnowski '85]
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D={qy(») q(h/y)}

e-projection m-projection

M={p(y,h;$)}

[Amari, Kurata, Nagaoka '92]

With hidden units x = (zvy,zg)

pg(:l?v) = Zexp (Z (9@337, + Zé’ijxixj — ?70(9)

1<j

e The Boltzmann machine defines a
curved manifold with singularities

 MLE minimizes KL-divergence from
m-flat data manifold to the e-flat
fully observable Boltzmann manifold

e [terative optimization using m- and e-

projections, EM-algorithm

[Amari, Kurata, Nagaoka '92]
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Algebraic Geometric Perspectives

A Boltzmann machine has a polynomial
parametrization and defines a semialgebraic
variety in the probability simplex

Main invariant of interest is the expected
dimension and the number of parameters of
(Zariski) dense models

Implicitization: Find an ideal basis that cuts
out the model from the probability simplex

(p=g(0): 0 eRINA
{peA:flp)=0,fel}

[Pistone, Riccomagno, Wynn ‘01] [Garcia, Stillman, Sturmfels ‘05]
[Geiger, Meek, Sturmfels ‘06] [Cueto, Morton, Sturmfels ‘10]
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3 X 3 minors
of 2-d flattenings

[Raicu ’11]

H, Hy
Hidden

Observed
X1 X X3 Xy

One polynomial of degree 110
and >5.5 trillion monomials

[Cueto, Tobis, Yu '10]




Questions

po(zv) = Zexp Zeixi + Zeijwﬂj — () |, ry € {0,1}"

1<J

Universal Approximation. What is the smallest
number of hidden units such that any distribution on
{0,1}V can be represented to within any desired
accuracy?

Dimension. What is the dimension of the set of
distributions represented by a fixed network?

visible

Approximation errors. MLE, maximum and
expected KL-divergence, etc.

Support sets. Properties of the marginal polytopes.



Various Possible Hierarchies
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Restricted Boltzmann Machine

[Smolensky '86]

Harmony Theory H#parameters =V - H+V + H
Hidden Un e hl h2 h3
A ™ plrv|rg) = Hp(iﬁz\mH)
L iV
L parlev) = 1] plajlev)
””””””” xI  x2  x3 x4 x5 jGH

[Freund & Haussler '94]
Influence Combination Machine

p(zy) o H q;j(zv)

JjeH

gi(xv) =X [ ] i) + @ =) ][ sj.i(2)
[Hinton '02] icV eV
Products of Experts




Universal Approximation



Universal Approximation

Let Hy ;= min{H: RBM is a universal approximator on {0,1}"}

nr. parameters behaviour

. 2V —v-1 1%
Observation Hy > == T 2
Theorem (Freund & Haussler '94) Hy < 2V,

Theorem (Le Roux & Bengio '10) Hy < 2V. y
Theorem (Younes '95) Hy <2V -V —1. V2
Theorem (M. & Ay '11) Hy < 22V — 1.

Theorem (M. & Rauh ’16) Hy < Q(IO%/QQH)QV — 1. log(V)2"




Comparison with mixtures of product distributions

Theorem. FEvery distribution on {0,1}V can be approzimated arbitrarily well
by a mizture of k product distributions if and only if k > 2V 1.

\%
@ (V2 ) [M., Kybernetika '13]

Theorem. Every distribution on {0,1}" can be approzimated arbitrarily well

by distributions from RBMy. g whenever H > 2(log(‘>/+—11)—|—1) 2V —(V+1)—1)+1.

Q(2"), O(log(V)2")

[M. & Rauh '16]



Proof | - Intuition

Each hidden unit extends the RBM along some parameters of the simplex

/m\
A

Previous Approach

[M. & Rauh ’'16] M. & Ay "11]
[Younes '95] [Le Roux & Bengio '08]



Prootf |l

Hierarchical models

Consider the set €5 of probability vectors

qs(rv) = exp (Z NI 10(19)) . av e{0,1}7,

AEA 1EN

for all ¥ € R, where A is an inclusion closed subset of 2V

Natural parameters

wxy) < —H() = Y 0]z ¢ 0)rea €RY (9a)aga =0
AEA TEA

Coordinates for the visible probability simplex

We will use each hidden unit to model a group of monomials



Proof Il

Boltzmann Machine

Zexp(Z@xmL Z 0z — )), ry € {0,1}"

€eV,geH

Free Energy

po(ry) < —F(xy) = log (Zexp(ZHixi—l- Z Gisz-a:j>)

eV, jeH
= Z 10g (1 + exp(ﬁj + Z QZJJZZ))
jeH eV

Natural parameters in the visible probability simplex

< U0 Z Z |B\C|log(1—|—exp -—I—ZHM)), Be2v

jEH CCB ieC

Sum of independent terms



Proof IV - Softplus polynomials

p(ry) = log (1 + eXp(Hj + Z 923x1)> f(s) =log(1 + exp(s))
eV
= Z Kj,B H X;
BCV i€B
/

We show that certain groups of coefficients can be made arbitrary:

K12y

Lemma 2. Consider an edge pair (B, B’). Depending on |B|, for any ¢ > 0 there is a
choice of wp € RE and ¢ € R such that ||(Kp, Kp') — (Jp, Jp')|| < € if and only if

Jpr > 0,—Jp, for |B|=1
Jg >0,—Jp or Jp <0,—Jp, for |B|=2
JB/ZO,—JB or JB/SO,—JB, f07° |B|:3
(JB,JB/) ERQ, fO?” |B| > 4.

T — R —

Lemma 5. Consider any B,B' CV with BN B = 0. Let w; =0 fori & BUB’. Then,
for any Jpugy €R, j € B, and € > 0, there is a choice of wpup: € RBYB" and ¢ € R such
that |Kpug;y — Jpugsy] <€ forall j € B', and |K¢o| <€ for all C # B,BU{j}, j € B'.




Proof IV - Softplus polynomials

p(ry) = log (1 + exp(ﬁj + Z ewxi)) f(s) =log(1 + exp(s))
eV
= Z Kj,B H X;
BCV i€B
/

We show that certain groups of coefficients can be made arbitrary:

Lemma 2. Consider an edge pair (B, B’). Depending on |B|, for any ¢ > 0 there is a
choice of wp € RE and ¢ € R such that ||(Kp, Kp') — (Jp, Jp')|| < € if and only if 1

Jpr > 0,—Jp, for |B|=1
Jg >0,—Jp or Jp <0,—Jp, for |B|=2
JB/ZO,—JB or JB/§0,—JB, fOT’ |B|:3
(JB,JB/) c RZ, fO?” |B| > 4.

T — R —

Lemma 5. Consider any B,B' CV with BN B = 0. Let w; =0 fori & BUB’. Then, ,19
for any Jpugy €R, j € B, and € > 0, there is a choice of wpup: € RBYB" and ¢ € R such
that |Kpug;y — Jpugsy] <€ forall j € B', and |K¢o| <€ for all C # B,BU{j}, j € B'.




Proof V - Coverings

* Each hidden unit adds a linear space of (1239
coefficients, corresponding to an exponential // \\
family of dim up to V w23} (L2g gsg 239

\

Adding sufficiently many linear spaces 24 By
produces any hierarchical model /

* Previous proofs added at most 1 or 2
dimensions per hidden unit

Theorem. Let 1 < k < V. Every distribution from the k-interaction model &,

on {0,1}V can be approximated arbitrarily well by distributions from RBMy. g

log(V—1)+1 k V+1
whenever H > VIl D=2 ( s )

QED



Dimension



Dimension

Consider M = {py: 0 € Rd} C Apn_; parametrized by ¢: R? = Ax_1: 6 — py.

| BT NVaN

AQV—|—H 1 AQV 1

Conjecture (Cueto, Morton, Sturmfels, 2010). The restricted Boltzmann ma-

chine has the expected dimension, i.e., it 1s a semialgebraic set of dimension
min{VH +V + H,2"V — 1} in Ayv_;.

|
T ————— .



Dimension

Theorem (Cueto, Morton, Sturmfels, 2010). The restricted Boltzmann ma-
chine has the expected dimension min{VH+V +H, 2V —1} when H < 9V —[logs (V+1)]
and when H > 2V —log2(V+1)]

n k< k> n k<
16
5 22 7 35 22%.83
6 23 12 37 22641 "
7 24 24 39 231 .5 12
8| 22.5 2° 47 238.9
9| 2.5 62 63 257 v
0] 2%.9 120 70 2%%.1657009 A
11| 2%.9 192 71 293.3 =
12 28 380 75 263 .41 °
13 2° 736 79 270.5 4
14 210 1408 95 285 .9 2;
' 15 211 211 127 2120
SpeC|a| 16 | 2°-85 2" 141 2'1%.1657009 O pen 0
17| 2¢.83 213 143 2184 .3 ° ° * @
18 | 28 .41 o4 151 2138 .41
Cases 19| 2'%.5 | 31744 159 21495 CaSGS
20| 2'2.9 63488 163 2'%1.19
21| 213.9 122880 191 2180 .9 I |
22| 2.9 | 245760 255 2247
23| 2'%.9 | 393216 270 | 2%92.1021273028302258913
24 219 786432 283 2254. 1657009
25 220 1556480 287 2277.3
26 2% 3112960 300 | 2220 . 3348824985082075276195 ]
27| 2% 6029312 303 2289 .41 Lo
28 2% 12058624 319 2308 . 5
29 224 23068672 327 2314 .19
30 2% 46137344 383 237 .9 02
31 226 226 511 2502
32 | 220.85 927 512 | 2%3.1021273028302258913 o
33| 221.85 228 % 10 15 20
n

Theorem (M. & Morton, 2016). The restricted Boltzmann machine has the
expected dimension min{VH +V + H,2" — 1},




Proot | - Marginals of Exponential Families

Let Mg be given by

po(w) = 3 de) exp((0, F(z,y))), z€X, 6cRe
yey

I —

Dimension is maximum rank of Jacobian matrix

Tt (0 (Zpe z,y)F ZP@ z,y) Zpe ',y ) F (' y’))

x

rank (Ja . (0)) =rank (Zpg(:c,y)F(:U,y)> —1

Yy

=rank (Zpe(yw)F(w,y)> -1

Yy

expectation parameters of conditional distributions




Tropical Dimension Approach - Intuitive View

max rank (Zpg(x|y)F(x,y)> > max rank (F'(z, hg(x))),

he(x) := argmax, ps(y|z) = argmax, (0, F(z,y))

RBM Tropical RBM
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[Bieri-Groves ‘84] [Draisma ‘08] [Cueto, Morton, Sturmfels ‘10] [M. & Morton '15]



Tropical Dimension Approach - Intuitive View

/ I S
Z Jramzep (W, b.c) = 1
/  Xc,, |
@ @
H ]

e Tropical approach is very powerful. In many cases the tropical rank
IS associated to known combinatorial quantities

« However, many cases it leads to very hard combinatorial problems



Prootf |l

Theorem (Catalisano, Geramita, Gimigliano, 2011 - rephrased). The set of

miztures of H + 1 product distributions of V' binary variables has the expected
dimension min{VH +V + H,2V — 1}, whenever V > 5.

Observation. The sufficient statistics matriz of RBMy i satisfies F(x,y) =

A(x) ® B(y), where A, B describe V' and H independent binary variables and
each includes a constant row.

Lemma. Let A, B,C be sufficient statistics matrices, each containing a con-
stant row. If B describes H independent binary variables and C' describes one
categorical variable with H + 1 values, then dim(Magp) > dim(Magc)-




Proof |1l

e For the RBM we have

rank (Jrgm, ,(0)) = rank (H SE, | H )X.

e For the mixture of products we have

- [ 1),

e We show that to any Jwixt, ... (¢) there is a Jram,,,(¢) with
the same rank.



Proot |V

1
1 po(y1 = 1]x)
o]
y :
_pQ(Ym — ]-‘X)_
RBM
® ®
o
Ey!w [zﬂ
@ o

(1\ )
pp(1|x
e [«;]: pez

| Po(m]x) |

Mixture of products

QED



Conclusion

Boltzmann machines define marginals of exponential families with an
Interesting geometry.

| presented new results on two basic questions:

Universal approximation

RBMs and BMs are universal approximators with significantly less
parameters than previously known.

This result also shows that universal approximation with RBMs require
significantly less parameters than with mixtures of products

Dimension

RBMs always have the expected dimension.

This completes the dimension characterization initiated by Cueto,
Morton, Sturmfels, and resolves their conjecture positively



Open Problems

Can the universal approximation bounds for restricted Boltzmann
machines be improved?

Do deep Boltzmann machines have the expected dimension?

Are less parameters possible with deep Boltzmann machines?
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