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I: Introduction, Information Theoretical Inference

The start: Shannon1, a myriad of followers; relevant here:
Kullback, Čencov, Csiszár, Jaynes, Rissanen, Barron,
later Grunwald, Dawid, Lauritsen, Matús ...

Ingarden & Urbanik, 1962: “ ... information seems intuitively
a much simpler and more elementary notion than that of
probability ... [it] represents a more primary step of knowledge
than that of cognition of probability ...”
Kolmogorov, ≈ 1970: “Information theory must preceed
probability theory and not be based on it”

... so the need arose to develop a Theory of Information
without probability.

1born 1916, so this year we celebrate the Shannon centenary!
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I’: Abstract Quantitative Theories of Information

Possible approaches can be based on

• on geometry (Amari2, Nagaoka),

• on convexity (Csiszár, Matús),

• on complexity (Solominov, Kolmogorov),

• or on games (Pfaffelhuber, FT).

We shall focus on the approach via games. Convexity will
creep in ...

My original motivation: To understand better Tsallis entropy,
a purely probabilistic notion, for which the physicists had no
natural interpretation. I discovered that my approach
(solution!?) to that problem was to a large extent abstract,
based on non-probabilistic thinking.

280 years, thanks and congratulations!
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II: Overall Philosophical Basis for Approach

Mans encounters with the outside world are
viewed as situations of conflict between two
sides with widely different characteristica
and capabilities: Observer and Nature.

Philosophical and also psychological considerations and
guiding principles will play a role.
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II’: Nature and Observer, Roles and Capabilities

• Nature holds the truth (x ∈ X , the state space);

• Observer seeks the truth but is relegated to belief
(y ∈ Y , the belief reservoir.)
In general Y ⊇ X ; we assume Y = X ;

• Nature has no mind!

• Observer has – and can use it constructively, designing
experiments or making measurements with the goal to
extract knowledge with as little effort as possible;

• Observer can prepare a situation from the world which
the players are placed in (a preparation: P ⊆ X ).

[If you like, take Nature as female, Observer as male!]

Slide 6/36



un i v e r s i ty of cop enhagen

III: 1st guiding Principle, Properness

Properness - or the Perfect Matching Principle:
Minimizing effort should have a training effect.

• An effort function is a function Φ : X × Y →]−∞,∞]
such that, for all (x , y), Φ(x , y) ≥ Φ(x , x);

• Φ is proper if, further, equality only holds if y = x
(unless Φx ≡ ∞);

• x 7→ Φ(x , x) is necessity or entropy. Notation: H(x);

• The excess is divergence: D(x , y). Thus the important
linking identity holds:

Φ(x , y) = H(x) + D(x , y).

Effort given by Φ you may often think of as description effort.

Slide 7/36



un i v e r s i ty of cop enhagen

IV: Three Examples, first one probabilistic:

Shannon Theory. Take X = Y = a probability simplex, say
over a finite alphabet A. With

Φ(x , y) =
∑

i∈A

xi log
1

yi

(Kerridge inaccuracy)

we find the the well known formulas

H(x) =
∑

i∈A

xi log
1

xi

and D(x , y) =
∑

i∈A

xi log
xi

yi

.

(Shannon entropy and Kullback-Leibler divergence.)
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IV’: Second example, projection in Hilbert Space:

Take X = Y = a Hilbert space, let y0 ∈ Y , a prior, and take

Φ(x , y) = ‖x − y‖2 − ‖x − y0‖
2. Then:

H(x) = −‖x − y0‖
2 and D(x , y) = ‖x − y‖2 .

With x restricted to a preparation P, maximizing entropy
(Jaynes Principle) corresponds to seeking a (the) projection of
y0 on P.

More natural to work with −Φ, best thought of as a utility
function , in fact U(x , y) = −Φ(x , y) is a natural measure of
the updating gain when replacing the prior y0 by posterior y .

Results on effort give at the same time results about utility!
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IV”: Third example, also geometric, but queer:

X = Y = Hilbert space. Now take

Φ(x , y) = ‖x − y‖2 .

Perfectly acceptable proper effort function, but queer:
Entropy vanishes identically: H ≡ 0! and D = Φ , thus the
linking identity becomes something very tame in this case.

We will later see how to “un-tame” it and obtain an example
related to a classical problem within location theory:

Sylvester’s Problem: To determine the point in the plane
with the least maximal distance to a given finite set of points.
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V: Visibility

This us an innocent refinement, which you may at first
choose to ignore. What we do is to replace X × Y by a

relation X ⊗ Y , called visibility. A pair (x , y) ∈ X ⊗ Y is an
atomic situation and we write y ≻ x and say that x is visible
from y . We assume that x ≻ x for all states x . Notation:
]y [= {x |y ≻ x} and [x] = {y |y ≻ x}. Example: next slide!

An effort function is now defined only on X ⊗ Y . Likewise for
divergence. Entropy is defined on all of X .

Other possible refinements include the introduction of a
subset Ydet ⊆ Y of certain beliefs.
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V’: Visibility in a Probability Simplex

]y [

y

y
y

[x]

x

x
x
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VI: 2nd Guide: From belief to Action and Control

Good’s mantra:
Belief is a tendency to act!

Introduce a map y 7→ ŷ , called response, which maps Y into
an action space W . Response need not be injective. We
write W = Ŷ . Elements in W are actions, or controls. W
may contain w∅, the empty action or empty control. We
assume that ŷ = w∅ if y ∈ Ydet.

Further, we assume given a relation X ⊗ Ŷ from X to Ŷ ,
controlability. Pairs (x ,w) ∈ X ⊗ Ŷ are atomic situations (in
the Ŷ -domain); we write w ≻ x and say that w controls x .
If w = x̂ , w is adapted to x . We assume that x̂ ≻ x for all x .
Often there will exist universal controls: (w ≻ x ∀x ∈ X ).

Now focus on functions for Ŷ -domain in place of (Φ,H,D):
Slide 13/36
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VI’: New definitions (Ŷ -domain)

• An effort function (Ŷ -domain) is a function
Φ̂ : X ⊗ Ŷ →]−∞,∞] such that, for all atomic
situations, Φ̂(x ,w) ≥ Φ̂(x , x̂);

• Φ̂ is proper if, further, equality only holds if w = x̂
(unless Φ̂x ≡ ∞); more general definition later

• x 7→ Φ̂(x , x̂) is entropy. Notation unchanged: H(x);

• The excess is redundancy: D̂(x ,w). Thus the important
linking identity holds:

Φ̂(x ,w) = H(x) + D̂(x ,w)

If need be, introduce derived visibility, derived effort and
derived divergence:

X ⊗ Y = {(x , y)|(x , ŷ ) ∈ X ⊗ Ŷ };
Φ(x , y) = Φ̂(x , ŷ ), D(x , y) = D̂(x , ŷ ) for (x , y) ∈ X⊗Y .
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VI”: Some merits

Merits of working in Ŷ -domain:

• formally,more general (as response need not be injective);

• useful;

• natural;

• a simple extension to work with.

In many examples we do not need to care much about Y .
But caution: Φ derived from a proper Φ̂ need not be proper
as you can then only conclude ŷ = x̂ from Φ(x , y) = H(x).

In the further development we shall focus not only on effort,
but on all three functions appearing in the linking identity.
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VII: Information Triples
Given X , W (= Ŷ ), response (x ∈ X 7→ w = x̂ ∈ W ) and
controllability X ⊗ Ŷ , consider the following properties of a
triple (Φ̂,H, D̂):

• L (linking): Φ̂(x ,w) = H(x) + D̂(x ,w);
• F (fundamental inequality): D̂(x ,w) ≥ 0;
• S (soundness): D̂(x , x̂) = 0;
• P (properness): w 6= x̂ ⇒ D̂(x ,w) > 0. Definitions:

• (Φ̂,H, D̂) is an (effort based) information triple if L,F and
S hold. Φ̂ is effort, H is entropy and D̂ redundancy.

• (Φ̂,H, D̂) is an (effort based) proper information triple if
L,F,S and P hold (in that case, Φ̂ is a proper effort
function as defined before);

• Given only D̂, D̂ is a proper redundancy function if F,S
and P hold.
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VII’: Utility-based Information Triples
Given X , W (= Ŷ ), response (x ∈ X 7→ w = x̂ ∈ W ) and
controllability X ⊗ Ŷ , consider the following properties of a
triple (Û,M, D̂):

• L (linking): Û(x ,w) = M(x) − D̂(x ,w);

• F (fundamental inequality): D̂(x ,w) ≥ 0;

• (soundness): D̂(x , x̂ ) = 0;

• P (properness): w 6= x̂ ⇒ D̂(x ,w) > 0. Definitions:

• (Û,M, D̂) is a (utility-based) information triple if L,F and
S hold. Û is utility, M is max-utility and D̂ is redundancy.

• (Û,M, D̂) is an (utility-based) proper information triple if
L,F,S and P hold.

• Given only D̂, D̂ is a proper redundancy function if F,S
and P hold.

Thus, (Û,M, D̂) has nice property as a utility-based triple if
and only if (−Û,−M, D̂) has so as an effort-based triple.
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VII”: Repeating definitions, adding some facts...

L: Φ̂ = H+D̂; F: D̂ ≥ 0; S: D̂(x , x̂) = 0; P: D̂(x ,w) > 0 for w 6= x̂ .

• (Φ̂,H, D̂) is an information triple (I-Trip) ∴ L,F,S hold;

• An I-Trip is degenerate∴ D̂ ≡ 0; then I-Trip is (H,H, 0);

• An I-Trip is proper∴ also P holds;

• Given only a function D̂, D̂ is proper ∴ F,S,P hold; then
(D̂, 0, D̂) is a proper I-Trip;

• I-Trips are equivalent∴ they have the same redundancy;

• Initial I-Trip of I-Trip (Φ̂,H, D̂) ∴ the I-Trip (D̂, 0, D̂);

• Adding (or integrating) I-Trips leads to I-Trips; if one is
proper, so is the resulting one;

• Given an I-Trip, any equivalent one is obtained from the
initial I-Trip by adding any degenerate I-Trip.
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VII” ’: More on structure of information triples

• If two I-Trips differ by a positive factor, they are scalarly
equivalent – choice among scarlarly equivalent I-Trips
amounts to a choice of unit;

• Relativization involves prior and choice by Observer of
posterior. Already indicated in an example; classically
leads to information projections;

• Randomization requires affine structure on X , illustrated
on a following slide for Sylvester example; classically
leads to capacity determination for information channels.

Natural Problem: Representation via “primitive” triples.
Leads to Bregman set-up...
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VIII: Game Theory applied to I-Triples

Given proper I-Trip (Φ̂,H, D̂) and a preparation P ⊆ X .

For the effort game γ̂(P):
- strategies for Nature are x ∈ P, for Observer w ≻ P,
- object function Φ̂, Nature maximizer, Observer minimizer.

The two values for the game are

sup
x∈P

inf
w≻x

Φ̂(x ,w) = sup
x∈P

H(x) = Hmax(P) ;

inf
w≻P

sup
x∈P

Φ̂(x ,w) = inf
w≻P

R̂i(w | P) = R̂imin(P).

(“Ri” for “risk”). The minimax-inequality
Hmax(P) ≤ R̂imin(P) always holds. Notions of equilibrium (à
la Nash) and optimal strategies are introduced as usual.
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VIII’:Typical results for γ̂(P)

Thesis: “normally” γ̂(P) is in Nash-equilibrium and there exists
a bi-optimal pair of strategies, (x∗,w∗) such that w∗ = x̂∗.
w∗ is the unique optimal strategy for Observer and all opti-
mal strategies for Nature are equivalent under response (hence
unique if response is injective). Further, the direct as well as
the indirect Pythagorean inequalities hold:

H(x) + D̂(x ,w∗) ≤ H(x∗) for x ∈ P

R̂i(w∗|P) + D̂(x∗,w) ≤ R̂i(w | P) for w ≻ P .

Important special cases where this can be checked: If w∗

is robust i.e., for some constant h, effort is independent of Na-
ture’s strategy: Φ̂(x ,w∗) = h for all x ∈ P . Then Pythagoras
inequality holds with equality.

(related to exponential families)
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y0 y∗

x∗

P y0 x∗ =
y∗

P
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y∗y0 core(P)

P

P

Figure: Preparation family and its core
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IX: Randomization, Sylvester, Capacity
Find location η ∈ R

2 with maxξ∈A ‖ξ − η‖ minimal (A finite)

Try effort=‖ξ − η‖2. Modify by randomization: State space:
probability distributions over A, control space: co(A) (or R2)
and response: barycentric map. Notation: State P = (pξ)ξ∈A,

control η, response: P̂ =
∑

ξ∈A pξ · ξ. Now define effort by

Φ̂(P , η) =
∑

ξ∈A

pξ‖ξ − η‖2. Then

Φ̂(P , η) =
∑

ξ∈A

pξ‖(ξ − P̂) + (P̂ − η)‖2 =
∑

ξ∈A

pξ‖ξ − P̂‖2 + ‖P̂ − η‖2,

hence H(P) =
∑

ξ∈A

pξ‖ξ − P̂‖2 and D̂(P , η) = ‖P̂ − η‖2.

(Φ̂,H, D̂) is a proper I-Trip. For associated game and any
control η: R̂i(η) = maxP Φ̂(P , η) = maxξ∈A ‖ξ − η‖2.

Slide 24/36



un i v e r s i ty of cop enhagen

IX’: Kuhn-Tucker type results
So R̂imin = minη maxξ ‖ξ − η‖2, just what Sylvester looked for
- except for the square. But who cares! By robustness, if a
point η has the same distance to all points in A, this is the
location Sylvester sought. With a simple extension of
robustness which applies to randomized models (and with
some extra work on necessity), one can prove:

Necessary and sufficient that η ∈ co(A) is a solution, necessarily
unique, to Sylvester’s problem is that, for some constant R ,
‖ξ−η‖ ≤ R for all ξ ∈ A and that η can be written in the form
η = P̂ with ‖ξ − η‖ = R for all ξ ∈ A with pξ > 0.

Obs: Resemblance with well known Kuhn-Tucker type results
of information theory on channel capacity. Proof is “the
same” and can be based on any proper abstract divergence
function which satisfies the so-called compensation identity,
∑

pi D̂(xi ,w) = D̂
(
∑

pixi ,w
)

+
∑

pi D̂(xi , x̂) with
x =

∑

pixi .
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X: Primitive I-Triples, Bregman Construction

A primitive I-Trip (φ, h, d) is one for which X = Y = I is an
interval in R. Important are those with affine marginals φu

(φ = φ(s, u). Normally we may take I ⊗ I = I × I , though
variants may be convenient to handle endpoint behaviour.
Bregman construction: Let h be smooth strictly concave
function on I . With

φ(s, u) = h(u) + (s − u) h′(u) ,

d(s, u) = h(u)− h(s) + (s − u) h′(u) ,

(φ, h, d) is a proper primitive I-Trip.
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X’: Bregman Construction

ϕ(s, u)

a u s b

h

h(s)

d(s, u)

Figure: Bregman generator and primitive effort-based information
triple
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X”: Standard concrete Examples
Example 1. Standard algebraic triple is given by

φ(s, u) = u2 − 2su (affine in s!),

h(s) = −s2 ,

d(s, u) = (s − u)2

over ]−∞,+∞[. By integration, this leads to basic concepts
from Hilbert space theory.
Example 2. Standard logarithmic triple given by

φ(s, u) = u − s + s ln
1

u
(affine in s!),

h(s) = s ln
1

s
,

d(s, u) = u − s + s ln
s

u
.

over [0,∞]. By integration, this leads to basic concepts from
Shannon theory.
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XI: Relaxed notion of properness
For Bregman’s construction, it is natural to allow concave
generators h which are not necessarily strictly concave. This
can be achieved by two extended definitions:

• a general extension of properness to weak properness
(here corresponding to P = X ):
P’: If w 6= x̂ and D̂(x ,w) = 0, then R̂i(w) > H(x);
(a stronger form requires R̂i(w) > R̂i(x̂) which in a way
is a more natural condition);

• a notion of extended control for h, viz. that you, for
x ∈ I , as w = x̂ take that line through (x , h(x)) which
controls h (lies on or above h) and is closest to a
horizontal line.

Important to work in the Ŷ domain (natural attempt for
Y -domain will not allow h to have horizontal parts). You also
have to extend the general theory (bi-optimality etc.) to the
general case. Going further, h need not even be concave...
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XI’: Possible generalisation, Bregman Case

P = P∗

h

(a) Non-smooth
generator

h

P

P∗

(b) Mixed
concave/convex

h

P = P∗

(c) Upper
semi-continuous
generator with a
discontinuity point

Figure: Possible types of generators.

Slide 30/36



un i v e r s i ty of cop enhagen

XII: Uniqueness of Shannon and Tsallis entropy
Problem: How to choose the effort function?
We shall study models where truth and belief interact and
result in perception for Observer. We only consider discrete
probabilistic models with states x = (xi )i∈A and belief
instances y = (yi )i∈A over an infinite alphabet A (possibly
∑

i yi ≤ 1). Write y ≻ x if supp(x) ⊆ supp(y). Also put
Ydet = {y |∃i : yi = 1}.
We assume that interaction acts locally. Formally: Let
π = π(s, u), the interactor, be defined on [0, 1]× [0, 1] and
interpret π(s, u) as the perceived intensity of an event with
true intensity s and believed intensity u. Then, for an atomic
situation (x , y), the perceived intensity of event with index i
is π(xi , yi ).

Denote models of this type Ωπ. We assume that π is sound
(π(s, s) = s) and sufficiently smooth.
Examples: Ωq with πq(s, t) = qs + (1 − q)t. For q = 1 you
get the classical world, for q = 0 a black hole.Slide 31/36
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XII’: Description effort

We base the analysis on the notion of a descriptor, again
assumed to act locally. This is a function κ : [0, 1] → [0,∞].
Interpretation: If Observer believes an event has probability u,
then, with an effort κ(u), the description effort, he can
describe the event.

We require that κ is non-increasing, that κ(1) = 0 and that
κ′(1) = −1 (a condition of normalization). By definition, this
gives effort and information in natural units.

The pointwise effort function, respectively the full effort
function are the functions

φ(s, u) = π(s, u)κ(u)

Φ(x , y) =
∑

i∈I

φ(xi , yi ).
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XII”: gross quantities rather than net quantities

Insight:

• φ is “never” proper;

• – but the gross pointwise effort function
φ̃(s, u) = π(s, u)κ(u) + u, hence also the integrated
version Φ̃(x , y) =

∑

i∈A φ̃(xi , yi ) stands a chance to be
so. If that is the case, we say that κ is proper;

• Interpretation: extra term corresponds to overhead cost

• Working with overhead is technically simpler and helps us
to interpret what the unit of information stands for.
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XII” ’: Worlds Ωπ, especially Ωq (π = πq)
Theorem.

• For any interactor π, at most one descriptor κ is proper for
the world Ωπ;

• No descriptor is proper for Ωq if q ≤ 0; however, q = 0 is a
degenerate case with κ0(u) =

1
u
− 1 and H0(x) = | supp x |;

Assume now that q > 0. Then:

• The proper descriptor κq exists and is given by
κq(u) = lnq

1
u
, the q-logarithm of 1

u
: 1

1−q

(

uq−1 − 1
)

). The
associated entropy function is
Havrda&Charvát-Lindhard&Nielsen-Tsallis· · · entropy;

• Other mean values than πq, e.g. geometric and harmonic
mean, also determine the same proper descriptor κq;

• The fundamental inequality even holds in the pointwise
version: π(s, u)κ(u) + u ≥ sκ(s) + s and is most simply
proved in this form.

(Special investigation required if A has only two elements.)
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Conclusions (claims!)

• The theory developed is natural as it builds on sound
philosophical considerations which are generally accepted
(?!) as representing key features of mans encounters
with situations from the world;

• the theory provides a common ground for diverse, at
times seemingly unrelated applications

• a switch back and forth from effort to utility (or score) is
trivial;

• technical handling is smooth (not much shown, though);

• I refuse to believe that apparent successes are
coincidental and claim that the modelling genuinly
reflects the “true nature” of basic elements of cognition.

• Main worry: Nothing is said about quantum modelling ...
If my ambitious claims are justified, this should be
possible!
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• What can go wrong does go wrong - so better prepare for the worst [Murphy].

• Overhead cost is the natural unit of information.

• You can only know what you can describe.

• Belief is a tendency to act [Good].

• Information is that which induces a change of action or belief.[Caticha]

• Conflict and selfish behaviour can be modelled mathematically - not love and perhaps
not even irrationality.

• Support learning by invoking sound training principles.

• Affinity appears to be a necessity behind successful quantitative modelling of
information.

• When deciding, choose maximal necessary effort or, if you have something to compare
with, minimal maximal deviation, always respecting available information. Any other
decision would imply that you had known something more [Jaynes, Kullback].

• Search for natural structural explanations, and reserve the use of non-constructive
methods to narrow down the search for solutions.

• Control is essential.
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