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Statistical models

What is a statistical model or a parametrized measure
model?

Heuristicly speaking, a statistical model is a family p(ξ)ξ∈M of
probability measures on a fixed sample space Ω which vary
“differentiably” with ξ ∈ M, where the parameter space M is a
(finite dimensional) manifold. More precisely, we make the
following definition:
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Definition (Amari, 1980)

Let Ω be a measure space.
A parametrized measure model with a regular density
function and reference measure µ0 is a family of measures given
by

p(ξ) = p̄(ξ;ω)µ0,

where p̄ > 0 is differentiable in the ξ-variable, and ∂v log p̄(ξ; ·) is
integrable w.r.t. p(ξ), i.e., ∂v log p̄(ξ; ·) ∈ L1(Ω, p(ξ)).

We call such a model statistical if all p(ξ) are probability
measures, i.e., if ‖p(ξ)‖ := p(ξ)(Ω) = 1.
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Remark:
We can always get a statistical model from a parametrized
measure model by normalization:
If p(ξ)ξ∈M is a parametrized measure model, then we obtain a
statistical model by setting

p0(ξ) :=
p(ξ)

‖p(ξ)‖
, where ‖p(ξ)‖ := p(ξ)(Ω)

(i.e. use projectivization of a finite measure). But sometimes it is
more convenient to work without this normalization.
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Canonical tensors and k-integrability

Now define the Canonical Tensors for a parametrized measure
model p(ξ)ξ∈M on Ω to be the following symmetric tensor fields:

τ1
ξ (v) :=

∫
Ω ∂v log p̄(ξ; ·) dp(ξ) =

∂v
∫

Ω p̄(ξ; ·)dµ0 = ∂v‖p(ξ)‖.
Thus, τ1 ≡ 0 for statistical models (i.e., if ‖p(ξ)‖ ≡ 1).

The Fisher metric is a symmetric 2-tensor:

gF (v ,w) = τ2
ξ (v ,w) :=

∫
Ω
∂v log p̄(ξ; ·)∂w log p̄(ξ; ·) dp(ξ)
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The Amari-Chentsov tensor is a symmetric 3-tensor:

TAC (v ,w , u) = τ3
ξ (v ,w , u)

:=

∫
Ω
∂v log p̄(ξ; ·)∂w log p̄(ξ; ·)∂u log p̄(ξ; ·) dp(ξ)

We can generalize this to arbitrary degrees. The canonical
n-tensor:

τnξ (v1, . . . , vn) :=

∫
Ω
∂v1 log p̄(ξ; ·) · · · ∂vn log p̄(ξ; ·) dp(ξ)

Observe that τn is only defined if ∂v log p̄(ξ; ·) ∈ Ln(Ω, p(ξ)).
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This motivates the following definition:

k-integrability (cf. AJLS 2015)

A parametrized measure model (M, p,Ω) is called k-integrable if
∂v log p̄(ξ; ·) ∈ Lk(Ω, p(ξ)) for all v ∈ TξM (plus some continuity
condition).

Example
Let Ω := (0, 1), dt the the Lebesgue measure and α ∈ (0, 1) be
fixed. For ξ ∈ (0,∞) define

p(ξ) = p̄(t; ξ)dt := (2 + sin(ξt−α))dt.

Then ∂ξ log p̄ = O(t−α), whence (M, p,Ω) is k-integrable iff
k < α−1.
In particular, the Fisher metric and the AC-tensor of this model is
defined iff α < 1/2 and α < 1/3, respectively.
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Geometrization of the space of measures on Ω

Question: Can we describe the geometry of parametrized measure
models (p(ξ))ξ∈M on Ω by describing some geometric structures
on the set of measures on Ω?
We define the following sets of measures on Ω:

P(Ω) := {probability meas.}
M(Ω) := {finite measures}
S(Ω) := {signed finite meas.}

P+(Ω, µ0)
P(Ω, µ0)

M+(Ω, µ0)
M(Ω, µ0)
S(Ω, µ0)


meas.
dominated
by µ0

Observe that S(Ω) and S(Ω, µ0) are Banach spaces w.r.t. to the
total variation, ‖µ‖TV := |µ|(Ω).
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Construction of Pistone-Sempi

Brief review of the idea of Pistone-Sempi (1995):

M+(Ω, µ0)
∼=↔ L(Ω, µ0) := {f : Ω→ R |

∫
Ω
ef µ0 <∞}.

Then L(Ω, µ0) can be given the structure of a Banach manifold,
which decomposes into disjoint connected components, each of
which is canonically embedded as an open convex set into some
Banach space. Thus, there is a canonical affine structure, and
much more....... cf. talk from last Monday.

Advantage: Very strong and beautiful geometric structure on
M+(Ω, µ0) ∼= L(Ω, µ0).
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Disadvantage: The condition that (p(ξ))ξ∈M ∈M+(Ω, µ0) is
differentiable (or even continuous) w.r.t. this Banach manifold
structure is very strong. (→ e-continuity)

Example. e-continuity of the map ξ 7→ p(ξ) ∈M+(Ω, µ0) implies
that the model is k-integrable for all k .
But not even this suffices: e.g. the family
(p(ξ))ξ∈R ∈M+((0, 1), dt) given by

p(ξ) := exp(−ξ2(log t)2) dt

is k-integrable for all k , but not e-continuous at ξ = 0 and hence
not differentiable as a map into M+((0, 1), dt).
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Tangent cones and tangent fibrations

Definition

Let V be a topological vector space and X ⊂ V an arbitrary
subset, x ∈ X .
v ∈ V is called a (both sided) tangent vector of X in x , if there is
a differentiable curve c : (−ε, ε)→ X with c(0) = x , ċ(0) = v .
TxX := {tangent vectors in x} ⊂ X is called the (double) tangent
cone of X in x .
Let TX :=

⋃̇
x∈XTxX ⊂ X × V . Then the canonical projection

TX → X onto the first component is called the tangent fibration
of X .

We apply this to V := S(Ω) and X := P(Ω) or X :=M(Ω),
respectively.
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We get the following result:

Proposition (AJLS 2015)

For µ ∈M(Ω) ⊂ S(Ω) we have

TµM(Ω) = S(Ω, µ) = {φµ | φ ∈ L1(Ω, µ)}

For µ ∈ P(Ω) ⊂ S(Ω) we have

TµP(Ω) = S0(Ω, µ) = {φµ | φ ∈ L1(Ω, µ),Eµ(φ) = 0}.
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Definition of parametrized measure models

Definition (AJLS, 2015)

Let Ω be a measure space.
A parametrized measure model (statistical model) is a map
p : M →M(Ω) (p : M → P(Ω)), which is differentiable when
regarded as a map between Banach manifolds M → S(Ω).

Thus, the differential is a bounded linear map

dξp : TξM → Tp(ξ)M(Ω) = S(Ω, p(ξ))

(dξp : TξM → Tp(ξ)P(Ω) = S0(Ω, p(ξ)))

That is: The directional derivatives ∂vp are dominated by p(ξ) for
v ∈ TξM.

L. Schwachhöfer Parametrized measure models and a generalization of Chentsov’s Theorem



Statistical models
Geometrization of the space of measures on Ω

Statistics and information loss
Invariant tensors and Chentsov’s theorem

Construction of Pistone-Sempi
Tangent cones and tangent fibrations
Definition of parametrized measure models

Advantages:

The previous definitions of statistical models of Amari and of
Pistone-Sempi are parametrized measure models in this sense.

If there is a reference measure µ0 dominating all p(ξ) (which
is always the case if M is finite dimensional), so that
p(ξ) = p̄(ξ; ·)µ0 for some density function p̄ : M × Ω→ R,
we do not assume that p̄ > 0 a.e.!!!.

We do not assume that the measures p(ξ) have the same null
sets, but inequivalent measures are allowed.

BUT: If log p̄ is not defined, can we define the canonical forms τn?
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Suppose that p(ξ) = p̄(ξ; ·)µ0 with p̄ > 0. Then for v ∈ TξM,

d(∂vp(ξ))

dp(ξ)
=
∂v p̄(ξ; ·)
p̄(ξ; ·)

= ∂v log p̄(ξ; ·),

and as ∂vp(ξ) is dominated by p(ξ), this expression makes always
sense.
Thus, we may define

∂v log p̄(ξ, ·) :=
d(∂vp(ξ))

dp(ξ)
∈ L1(Ω, p(ξ))

for any parametrized measure model, and this makes sense even
though log p̄ does not!!!
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In particular, the canonical tensors

τnξ (v1, . . . , vn) :=

∫
Ω
∂v1 log p̄(ξ; ·) · · · ∂vn log p̄(ξ; ·) dp(ξ)

are still well defined for this notion of parametrized measure model,
if ∂v log p̄(ξ; ·) ∈ Ln(Ω, p(ξ)), and the condition of k-integrability is
well defined.

Question: What is a good interpretation of the k-integrability
condition ∂v log p̄(ξ; ·) ∈ Lk(Ω, p(ξ)) ⊂ L1(Ω, p(ξ))?
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Consider the following rewriting of the canonical tensor τn in the
presence of a regular density function: p(ξ) = p̄(ξ;ω)µ0.

τn(v1, . . . , vn) =

∫
Ω
∂v1 log p̄ · · · ∂vn log p̄ dp(ξ)

=

∫
Ω

∂v1 p̄

p̄
· · · ∂vn p̄

p̄
p̄ dµ0

=

∫
Ω

∂v1 p̄

p̄1−1/n
· · · ∂vn p̄

p̄1−1/n
dµ0

= nn
∫

Ω
∂v1

n
√
p̄ · · · ∂vn n

√
p̄ dµ0

= nn
∫

Ω
d(∂v1

n
√
p̄µ0 · · · ∂vn n

√
p̄µ0)

= nn
∫

Ω
d(∂v1p(ξ)1/n · · · ∂vnp(ξ)1/n).

Can we make sense out of n-th roots of measures?
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Answer: YES, WE CAN!
For 0 < r ≤ 1, we can define Banach spaces (Sr (Ω), ‖ · ‖r ), whose
elements may be interpreted as ”r -th powers of a measure”. They
have the subsets P r (Ω) ⊂Mr (Ω) ⊂ Sr (Ω) of r -th powers of
(probability) measures.
We can work with these quite intuitively:

There is a multiplication map · : Sr (Ω)× Ss(Ω)→ Sr+s(Ω),
which is bilinear and bounded, if r , s, r + s ∈ (0, 1].

There is a power raising map πk : Sr (Ω)→ Skr (Ω) for all
r , kr ∈ (0, 1]. This map is continuous for all k > 0 and
differentiable for k ≥ 1.

We now say that a (general) parametrized measure model
p : M →M(Ω) is k-integrable, if
p1/k : M →M1/k(Ω) ⊂ S1/k(Ω) is (weakly) differentiable.
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Then the equation

τn(v1, . . . , vn) = nn
∫

Ω
d(∂v1p(ξ)1/n · · · ∂vnp(ξ)1/n)

means the following:
If we define the canonical n-form on S1/n(Ω) as

LnΩ(ν1, . . . , νn) := nn
∫

Ω
d(ν1 · · · νn),

then
τn = (p1/n)∗(LnΩ).

That is: the canonical forms are pull-backs of the natural
forms LnΩ on S1/n(Ω) via p1/n : M →M1/n(Ω).
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Statistics and information loss

A statistic is a measurable map κ : Ω→ Ω′ between measure
spaces Ω and Ω′. (We only consider deterministic maps here, but
all results presented here are also true if we consider Markov
kernels, i.e. “noisy statistics”).

Such a statistic induces a bounded lineas map κ∗ : S(Ω)→ S(Ω′)
by

κ∗(µ)(A) := µ(κ−1(A)).

Then κ∗ maps M(Ω) to M(Ω′) and P(Ω) to P(Ω′).

In particular, if p : M →M(Ω) is a parametrized measure model,
then so is p′ : M →M(Ω′) with p′(ξ) = κ∗p(ξ).
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Sufficient statistics

Heuristic Definition by Fisher:

... the criterion of sufficiency [...] requires that the whole of the
relevant information supplied by a sample shall be contained in
the statistics calculated. (Fisher, 1922)

The standard definition of sufficient statistic:

Definition Sufficient statistic (Fisher-Neyman)

Let (p(ξ))ξ∈M be a statistical model. A statistic κ : Ω→ Ω′ is
called sufficient for the model, if there is a measure µ ∈ P(Ω) such
that

p(ξ) = p̄′(ξ;κ(·))µ, p̄′ : M × Ω′ → R+.

In this case, p′(ξ) = κ∗(p(ξ)) = p̄′(ξ; ·)µ′, where
µ′ := κ∗(µ) ∈ P(Ω′). Thus, p′ yields the same information as p.
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Proposition (AJLS 2015)

Let (p(ξ))ξ∈M be a k-integrable parametrized measure model on Ω
and κ : Ω→ Ω′ a statistic.
Then the induced model (p′(ξ))ξ∈M on Ω′ with p′(ξ) := κ∗(p(ξ))
is also k-integrable.

E.g. if (p(ξ))ξ∈M is 2-integrable, so that the Fisher metric g = τ2

is defined, then so is (p′(ξ))ξ∈M , whence the Fisher metric g′ = τ ′2

of p′ is also defined.
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Monotonicity Theorem (AJLS (2015))

Let (p(ξ))ξ∈M be a k-integrable parametrized measure model
(statistical model) on Ω for k ≥ 2, let κ : Ω→ Ω′ be a statistic,
and let p′ := κ∗p as before, so that p′ is also k-integrable.
Then the Fisher metrics gF , g

′
F of p, p′ satisfy the monotonicity

condition
gF (v , v)− g′F (v , v) ≥ 0.

for all v ∈ TξM.

In Amari’s book (2000), this theorem is shown if Ω,Ω′ are
manifolds and κ is differentiable or at least admits transversal
measures. We show this result without any assumptions on Ω or κ.
The quantity gF (v , v)− g′F (v , v) is the information loss of the
model under κ.
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Observe that gF (v , v) = ‖∂v log p(ξ; ·)‖2
2, and

g′F (v , v) = ‖∂v log p′(ξ; ·)‖2
2 where the norms are taken in

L2(Ω, p(ξ)) and L2(Ω′, p′(ξ)), respectively.
We have the following generalization:

Theorem (AJLS (2015))

Let (p(ξ))ξ∈M be a k-integrable parametrized measure model
(statistical model) on Ω for k ≥ 2, let κ : Ω→ Ω′ be a statistic,
and let p′ := κ∗p as before, so that p′ is also k-integrable.
Then for all l ∈ (1, k] and v ∈ TξM we have

‖∂v log p‖ll − ‖∂v log p′‖ll ≥ 0.

Moreover, equality in this equation holds either for no l ∈ (1, k] or
for all l ∈ (1, k].
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As in the case k = 2 we can define the l-th order information loss
of the model under κ to be the quantity

‖∂v log p‖ll − ‖∂v log p′‖ll ≥ 0

That is, the information loss either vanishes for no l or for all l .

Theorem (AJLS 2016)

Let p : M →M(Ω), κ : Ω→ Ω′ and p′ := κ∗p as above, and
suppose that p(ξ) = p̄(ξ; ·)µ0 with p̄(ξ; ·) > 0 differentiable.
Then the information loss of the model under κ vanishes iff κ is
sufficient for the model.

Again, this was shown in Amari’s book already in the case of
manifolds Ω,Ω′ and differentiable κ.
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The condition p̄(ξ; ·) > 0 is crucial in this Theorem:
Example: Ω := (−1, 1)× (0, 1), Ω′ := (−1, 1), κ : Ω→ Ω′

canonical projection. Define p(ξ)ξ∈R = p̄(ξ; s, t) ds dt with

p(s, t; ξ) :=


h(ξ) for ξ ≥ 0 and s ≥ 0

2h(ξ)t for ξ < 0 and s ≥ 0

1− h(ξ) for s < 0

,

where h(ξ) := exp(−|ξ|−1) for ξ 6= 0 and h(0) := 0. Then p(ξ) is
a probability measure, and

p′(ξ) := κ∗p(ξ) = p̄′(s; ξ) ds, p̄′(s; ξ) =

{
(1− h(ξ)) s < 0

h(ξ) s ≥ 0
.

Then for all k ≥ 1,

‖∂ξ log p̄(s, t; ξ)‖k = ‖∂ξ log p̄′(s; ξ)‖k ,

whence there is no information loss, but κ is not sufficient.
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What is going on?

κ is a sufficient statistic when restricting to ξ > 0 or to ξ < 0:

p(ξ) =

{
p̄′(s; ξ) dsdt for ξ > 0

p̄′(s; ξ)(χ(−1,0)(s) + 2tχ[0,1)(s)) dsdt, for ξ < 0

But at ξ = 0, we have p̄(s, t; 0) = 0 for s > 0, so that p̄ > 0 is
violated.
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Invariant tensors

Definition

Suppose for every measure space Ω, ΘΩ is a covariant n-tensor on
M1/k(Ω) for some fixed k > 1. Then the family (ΘΩ) is called
invariant under sufficient statistics, if the following holds:
For any k-integrable parametrized measure model (p(ξ))ξ∈M on Ω
and any statistic κ : Ω→ Ω′ which is sufficient for the model we
have

(p1/k)∗(ΘΩ) = (p′
1/k

)∗(ΘΩ′).

Examples: The canonical tensor fields LnΩ on M1/n(Ω) are
invariant. Indeed, the pullback (p1/n)∗(ΘΩ) is the canonical form
τn.
As τn(v , . . . , v) = ‖∂v log p‖nn, it follows that this is invariant
under sufficient statistics by the monotonicity theorem.
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Further examples:

We can obtain further invariant tensors by taking tensor products
of the canonical tensors, taking linear combinations where the
coefficients are continuous functions of ‖p(ξ)‖ = p(ξ)(Ω). For
instance, we can consider the following 4-tensors:

Θµ(v1, v2, v3, v4) =a(µ(Ω))τ2(v1, v3)τ2(v2, v4)

+ b(µ(Ω))τ3(v1, v3, v4)τ1(v2)

+ c(µ(Ω))τ4(v1, v2, v3, v4)

+ . . .

Tensors of this form are called algebraically generated by the
canonical tensors.

L. Schwachhöfer Parametrized measure models and a generalization of Chentsov’s Theorem



Statistical models
Geometrization of the space of measures on Ω

Statistics and information loss
Invariant tensors and Chentsov’s theorem

Invariant tensors
Theorems of Chentsov and Campbell
Generalization of the Chentsov-Campbell Theorem

For n = 2 and 3, there is the following classification by Chentsov
and Campbell if Ω is finite.

Theorem (Chentsov (1976), Campbell (1986))

Let Ω = I be a finite measure space.
The only invariant 2-tensors on a parametrized measure model are
of the form

σ(v ,w) = f τ2(v ,w) + g τ1(v)τ1(w)

= f gF (v ,w) + g ∂v‖p(ξ)‖∂w‖p(ξ)‖,

where f , g are continuous functions depending on ‖p(ξ)‖.
In particular, for a statistical model (i.e. ‖p(ξ)‖ ≡ 1), the only
such tensor is (up to a constant) the Fisher metric.
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Theorem (Chentsov (1976), Campbell (1986))

Let Ω = I be a finite measure space.
The only invariant 3-tensors on a parametrized measure model are
of the form

σ(v ,w , u) = f τ3(v ,w , u)

+g1 τ
2(v ,w)τ1(u) + g2 τ

2(w , u)τ1(v)

+g3 τ
2(u, v)τ1(w)

+h τ1(v)τ1(w)τ1(u)

for functions f , g1, g2, g3, h depending on ‖p(ξ)‖.
In particular, for a statistical model (i.e. ‖p(ξ)‖ ≡ 1), the only
such tensor is (up to a constant) the Amari-Chentsov tensor τ3.
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What about invariant tensors for n ≥ 4?
We can define other invariant tensors by

Forming arbitrary tensor products of these.
For instance, the following are invariant 4-tensor fields:

σ0(v1, v2, v3, v4) = τ4(v1, v2, v3, v4), or

σ1(v1, v2, v3, v4) = τ2(v1, v3)τ2(v2, v4), or

σ2(v1, v2, v3, v4) = τ1(v3)τ3(v1, v2, v4), or

σ3(v1, v2, v3, v4) = τ1(v1)τ1(v4)τ2(v2, v3), or
...

...
...

...
...

...
...

...
...

Taking linear combiations of such tensors with functions
depending on ‖p(ξ)‖, for instance,

‖p(ξ)‖2σ1(v1, v2, v3, v4) + σ3(v1, v2, v3, v4).
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Generalization of the Chentsov-Campbell Theorem

We can generalize extend the result of Chentsov / Campbell to
arbitrary measure spaces and tensors of arbitrary degree:

Theorem (Ay, Lost, Lê, S. (2014))

Any family (Θk
Ω) of k-tensors which is invariant under sufficient

statistics is algebraically generated by (τn)n∈N in the sense
specified above.
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Remark:

Our proof shows that it suffices that the family is invarant
under sufficient statistics of the form κ : Ω→ I , where I is a
finite set.

If Ω is s manifold, then any diffeomorphism κ : Ω→ Ω may
be regarded as a statistic. Thus, an invariant family of tensors
must be invariant under the diffeomorphism group.
According to Michor et al., this property is already enough to
characterize the tensors algebraically generated by the
canonical tensors, if one assumes that the family (p(ξ))ξ∈M
only consists of densities on Ω. (cf. Michor’s talk)
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Thank you for your attention!
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