Conference in honor of Professor Amari

Riemannian interpretation of Wasserstein geometry

Felix Otto

Max Planck Institute for Mathematics in the Sciences
Leipzig, Germany

Arnol'd '66: Geometrization of fluid dynamics

Euler's equations for incompressible inviscid fluid, $x \in M=\mathbb{T}^{d}$:

$$
\begin{aligned}
\nabla \cdot u & =0, & u=u(t, x) \in \mathbb{R}^{d} & \text { Eulerian velocity } \\
\partial_{t} u+u \cdot \nabla u+\nabla p & =0, & p=p(t, x) \in \mathbb{R} & \text { pressure }
\end{aligned}
$$

(Formal) Riemannian manifold:
$\mathcal{M}:=\{\Phi$ diffeomorphism $\mid \Phi \# d x=d x\} \subset L^{2}\left(\mathbb{T}^{d}, \mathbb{R}^{d}\right)$

For curve $\Phi(t, \cdot)$ in \mathcal{M}, consider vector field $u(t, \cdot)$ given by $\partial_{t} \Phi(t, \cdot)=u(t, \cdot) \circ \Phi(t, \cdot)$, then
Φ is geodesic in $\mathcal{M} \Longleftrightarrow u$ satisfies Euler's equations

Arnol'd '66: an easy calculation

Euler's equations: $\nabla \cdot u=0, \partial_{t} u+u \cdot \nabla u+\nabla p=0$.
$\mathcal{M}:=\{\Phi$ diffeomorphism $\mid \Phi \# d x=d x\}$
$=\{\Phi$ diffeomorphism $\mid \operatorname{det} D \Phi \equiv 1\} \subset L^{2}\left(\mathbb{T}^{d}, \mathbb{R}^{d}\right)$.
Φ is geodesic in $\mathcal{M} \Longleftrightarrow u$ satisfies Euler's equations,
where $\partial_{t} \Phi(t)=u(t) \circ \Phi(t)$.
Liouville: $\partial_{t} \operatorname{det} D \Phi(t)=(\nabla \cdot u)(t) \circ \phi(t) \operatorname{det} D \Phi(t)$
Acceler. Lagrange vs Euler: $\partial_{t}^{2} \Phi(t)=\left(\partial_{t}+u \cdot \nabla u\right)(t) \circ \Phi(t)$.

Arnol'd '66: curvature can get very negative ...
u satisfies Euler's equations $\Longleftrightarrow \Phi$ is geodesic in \mathcal{M} where $\partial_{t} \Phi(t)=u(t) \circ \Phi(t)$.
$\mathcal{M}:=\{\Phi$ diffeom. $\mid \Phi \# d x=d x\}$
$=\{\Phi$ diffeom. $\mid \operatorname{det} D \Phi \equiv 1\} \subset L^{2}\left(\mathbb{T}^{d}, \mathbb{R}^{d}\right)$.
Tangent space in $\Phi: T_{\Phi} \mathcal{M}=\{u \circ \Phi \mid \nabla \cdot u=0\} \widehat{=}\{u \mid \nabla \cdot u=0\}$
Liouville: $\partial_{t} \operatorname{det} D \Phi(t)=(\nabla \cdot u)(t) \circ \phi(t) \operatorname{det} D \Phi(t)$
Sectional curvature of \mathcal{M} in plane $u_{1}-u_{2}$

$$
\begin{aligned}
& R_{\Phi}\left(u_{1}, u_{2}\right)=\int A\left(u_{1}, u_{1}\right) \cdot A\left(u_{2}, u_{2}\right)-\left|A\left(u_{1}, u_{2}\right)\right|^{2} d x \\
& \text { where } A(u, u):=\nabla p \text { with } p \text { solving } \nabla \cdot(u \cdot \nabla u+\nabla p)=0
\end{aligned}
$$

... geodesics diverge, effective unpredictability of Euler

Brenier '91: Projection onto \mathcal{M}...

$M=\left(\mathbb{R}^{d}, d \mu\right)$ so that
$\mathcal{M}:=\{\Phi$ diffeomorphism $\mid \Phi \# d \mu=d \mu\} \subset L_{\mu}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$.
Given $g \in L_{\mu}^{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ consider $\quad \inf _{\Phi \in \mathcal{M}}\|\Phi-g\|_{L_{\mu}^{2}}$.
Existence \& uniqueness, solution is of the form

$$
g=\nabla \psi \circ \Phi \quad \text { with } \quad \psi \text { convex }
$$

multi $-d \rightsquigarrow 1-d$: amounts to monotone rearrangement nonlinear \rightsquigarrow linear : amounts to Helmholtz projection
... \rightsquigarrow "polar factorization"

Brenier '91: Connection to optimal transportation

Set $\rho:=g \# \mu$, then
$\inf _{\Phi \in \mathcal{M}}\|\Phi-g\|_{L_{\mu}^{2}}^{2}$
$=\inf \left\{\int_{\mathbb{R}^{d}}|g-\Phi|^{2} d \mu \mid \Phi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \Phi \# \mu=\mu\right\}$
$=\inf \left\{\int_{\mathbb{R}^{d}}|\Psi(x)-x|^{2} \mu(d x)\right.$
$\left.\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \Psi \# \mu=\rho\right\} \quad$ Monde
$=\inf \left\{\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}|x-y|^{2} \pi(d x d y) \mid \pi\right.$ has marginals $\left.\mu, \rho\right\}$
$=\sup \left\{\left.\int\left(\frac{1}{2}|y|^{2}-\varphi(y)\right) \rho(d y)+\int\left(\frac{1}{2}|x|^{2}-\psi(x)\right) \mu(d x) \right\rvert\,\right.$
$\left.\psi, \varphi: \mathbb{R}^{d} \rightarrow \mathbb{R}, \varphi(y)+\psi(x) \geq x \cdot y\right\} \quad$ Kantorowicz
$=W^{2}(\rho, \mu) \quad$ Wasserstein metric

McCann '97: displacement convexity

$M=\mathbb{R}^{d}$. For densities ρ_{1} and ρ_{0} related via
$\rho_{1}=\Psi \# \rho_{0} \quad$ with $\quad \psi=\nabla \psi, \psi$ convex, see Brenier consider curve $\rho_{s}:=(s \Psi+(1-s) \mathrm{id}) \# \rho_{0}, s \in[0,1]$.

It is a metric geodesic in arc length wrt Wasserstein:

$$
W\left(\rho_{0}, \rho_{s}\right)=s W\left(\rho_{0}, \rho_{1}\right) \quad \text { and } \quad W\left(\rho_{s}, \rho_{1}\right)=(1-s) W\left(\rho_{0}, \rho_{1}\right)
$$

Consider functional on densities ρ of form $E(\rho):=\int_{\mathbb{R}^{d}} U(\rho) d x$.
If U such that $(0, \infty) \ni \lambda \mapsto \lambda^{d} U\left(\lambda^{-d}\right)$ convex $\&$ decreasing then E is convex along these geodesics
since A symmetric positive semi-definite $\mapsto(\operatorname{det} A)^{\frac{1}{d}}$ is concave

Barenblatt '52: nonlinear diffusions

Fix $m>0$. Consider $\rho(t, x) \geq 0$ solution of $\partial_{t} \rho-\triangle \rho^{m}=0$, wlog $\int \rho d x=1$.

Admits self-similar solution $\rho_{*}(t, x)=\frac{1}{t^{d \alpha}} \widehat{\rho}_{*}\left(\frac{x}{t^{\alpha}}\right)$
with $\alpha:=\frac{1}{2+(m-1) d}$.
ρ_{*} describes asymptotic behavior of any solution ρ :

$$
t^{d \alpha} \rho\left(t, t^{\alpha} \widehat{x}\right) \xrightarrow{t \uparrow \infty} \hat{\rho}_{*}(\hat{x})
$$

Friedman \& Kamin '80 based on Caffarelli \& Friedman '79

Otto '01: Formal Riemannian structure on space of probability measures
$\mathcal{P} \cong\left\{\rho: M \rightarrow[0, \infty) \mid \int_{M} \rho d x=1\right\}$ with metric tensor

$$
g_{\rho}\left(\delta \rho_{1}, \delta \rho_{2}\right)=\int_{M} \nabla \varphi_{1} \cdot \nabla \varphi_{2} d \rho
$$

where φ_{i} solves elliptic equation $-\nabla \cdot \rho \nabla \varphi_{i}=\delta \rho_{i}$
Connection to Arnol'd for $M=\mathbb{T}^{d}$:
The map $\Pi: L^{2}\left(\mathbb{T}^{d}, \mathbb{R}^{d}\right) \rightarrow \mathcal{P}, \Phi \mapsto \rho=\Phi \# d x$ is Riemannian submersion, $\Pi^{-1}\{d x\}=\mathcal{M}$.

Sectional curvature of \mathcal{P} in plane $\nabla \varphi_{1}, \nabla \varphi_{2}$

$$
R_{\rho}\left(\nabla \varphi_{1}, \nabla \varphi_{2}\right)=\int_{\mathbb{T}^{d}}\left|\left[\nabla \varphi_{1}, \nabla \varphi_{2}\right]-\nabla p\right|^{2} d \rho
$$

where p solves $\nabla \cdot \rho\left(\left[\nabla \varphi_{1}, \nabla \varphi_{2}\right]-\nabla p\right)=0$ (O'Neill formula).
Note $R \geq 0$ and $\equiv 0$ if and only if $d=1$.

Connections to Brenier and McCann

$\left.\mathcal{P} \widehat{=} \rho \rho: M \rightarrow[0, \infty) \mid \int \rho d x=1\right\}$ endowed with

$$
g_{\rho}\left(\delta \rho_{1}, \delta \rho_{2}\right)=\int_{M} \nabla \varphi_{1} \cdot \nabla \varphi_{2} d \rho
$$

where φ_{i} solves $-\nabla \cdot \rho \nabla \varphi_{i}=\delta \rho_{i}$
Connection to Brenier for $M=\mathbb{R}^{d}$:
Wasserstein distance $W=$ induced distance on \mathcal{P}
(Benamou-Brenier '00)
Connection to McCann for $M=\mathbb{R}^{d}$: displacement convexity $=$ (geodesic) convexity

Nonlinear diffusion $=$ contraction in Wasserstein

Connection to Barenblatt for $M=\mathbb{R}^{d}$: nonlinear diffusion $\partial_{t} \rho-\triangle \rho^{m}=0$ is gradient flow on \mathcal{P} of $E(\rho)=\int_{\mathbb{R}^{d}} U(\rho) d x$ with $U(\rho):=\left\{\begin{array}{cc}\frac{1}{m-1} \rho^{m} & m \neq 1 \\ \rho \ln \rho & m=1\end{array}\right\}$ (Jordan-Kinderlehrer-O.'97)
$m \geq 1-\frac{1}{d} \quad \Longleftrightarrow \quad \lambda \mapsto \lambda^{d} U\left(\lambda^{-d}\right)$ convex $\Longleftrightarrow E$ convex on \mathcal{P} Hence if $\rho_{i}, i=1,2$, solve $\partial_{t} \rho_{i}-\triangle \rho_{i}^{m}=0$ then

$$
\frac{d}{d t} W^{2}\left(\rho_{1}(t, \cdot), \rho_{2}(t, \cdot)\right) \leq 0
$$

In particular $W\left(t^{d \alpha} \rho\left(t, t^{d} \cdot\right), \hat{\rho}_{*}\right) \leq t^{-2 \alpha} \int_{\mathbb{R}^{d}}|x|^{2} d \rho(t=0)$

Connections with Ricci curvature

Theorem.
M (compact) d-dim. Riemannian manifold with Ric ≥ 0.
For $m \geq 1-\frac{1}{d}$ consider $\partial_{t} \rho_{i}-\triangle \rho_{i}^{m}=0, i=1,2$.
Then

$$
\frac{d}{d t} W^{2}\left(\rho_{1}(t, \cdot), \rho_{2}(t, \cdot)\right) \leq 1
$$

O.'01 for $M=\mathbb{R}^{d}$,
O.\&Villani '00 for general $M, m=1$ (heuristics),

Cordero\&McCann\&Schmuckenschläger'01,
Sturm\&v.Renesse '05 for general $M, m=1$ (necessity),
O.\&Westdickenberg '05

Calculus from differential geometry

Generalize to $\partial_{t} \rho-\triangle \pi(\rho)=0$.
Induced distance \rightsquigarrow energy of curves: Given one-parameter family $\{\rho(s, \cdot)\}_{s \in[0,1]}$ of solutions $\partial_{t} \rho(s, \cdot)-\triangle \pi(\rho(s, \cdot))=0$.
Show $\frac{d}{d t} \int_{0}^{1} g_{\rho(s, \cdot)}\left(\partial_{s} \rho(s, \cdot), \partial_{s} \rho(s, \cdot)\right) d s \leq 0$.
Infinitesimal version:
Suppose $\partial_{t} \rho-\triangle \pi(\rho)=0$ and $\partial_{t} \delta \rho-\triangle\left(\pi^{\prime}(\rho) \delta \rho\right)=0$. Show $\frac{d}{d t} g_{\rho}(\delta \rho, \delta \rho) \leq 0$.

Reduction to single formula

Infinitesimal version:
Suppose $\partial_{t} \rho-\triangle \pi(\rho)=0$ and $\partial_{t} \delta \rho-\triangle\left(\pi^{\prime}(\rho) \delta \rho\right)=0$.
Show $\frac{d}{d t} g_{\rho}(\delta \rho, \delta \rho) \leq 0$.
Explicit formula: For $\partial_{t} \rho-\triangle \pi(\rho)=0, \partial_{t} \delta \rho-\triangle\left(\pi^{\prime}(\rho) \delta \rho\right)=0$ and $\delta \rho=-\nabla \cdot(\rho \nabla \varphi)$ have

$$
\begin{aligned}
& \frac{d}{d t} \int \frac{1}{2}|\nabla \varphi|^{2} d \rho \\
& =-\int\left(\rho \pi^{\prime}(\rho)-\pi(\rho)\right)(\triangle \varphi)^{2}+\pi(\rho)\left(\left|\mathrm{D}^{2} \varphi\right|^{2}+\nabla \varphi \cdot \operatorname{Ric} \nabla \varphi\right) d x
\end{aligned}
$$

Use $(\triangle \varphi)^{2} \leq d\left|\mathrm{D}^{2} \varphi\right|^{2}$, need $\rho \pi^{\prime}(\rho)-\pi(\rho) \geq \frac{1}{d} \pi(\rho) \geq 0$

An easy calculation

$$
\begin{aligned}
& \frac{d}{d t} \int \frac{1}{2}|\nabla \varphi|^{2} d \rho \quad \text { eliminate } \partial_{t} \nabla \varphi \\
& =\int \varphi \partial_{t} \delta \rho-\frac{1}{2}|\nabla \varphi|^{2} \partial_{t} \rho d x \quad \text { eliminate } \partial_{t} \delta \rho, \partial_{t} \rho \\
& =\int \pi^{\prime}(\rho) \delta \rho \triangle \varphi-\pi(\rho) \triangle \frac{1}{2}|\nabla \varphi|^{2} d x \quad \text { eliminate } \delta \rho \\
& =-\int \rho \pi^{\prime}(\rho)(\triangle \varphi)^{2}+\pi(\rho)\left(\triangle \frac{1}{2}|\nabla \varphi|^{2}-\nabla \cdot(\triangle \varphi \nabla \varphi)\right) d x
\end{aligned}
$$

Use Bochner's formula $\triangle \frac{1}{2}|\nabla \varphi|^{2}-\nabla \cdot(\triangle \varphi \nabla \varphi)$
$=\left|\mathrm{D}^{2} \varphi\right|^{2}+\nabla \varphi \cdot \operatorname{Ric} \nabla \varphi-(\triangle \varphi)^{2}$
Reminiscent of Γ_{2}-calculus of Bakry-Emery '84

Past - present

Use Wasserstein contraction to give
"synthetic" definition of Ric ≥ 0 on metric spaces M (Sturm, Lott-Villani, Ambrosio-Gigli-Savaré, ...)

Connections with Ricci flow (McCann-Topping, ...)
Regularity of Brenier map on smooth manifolds M (Caffarelli+, Trudinger+, Kim, Loeper, Figalli+, ...)

Large deviation principle of underlying particle system selects the good gradient flow structure
(Dawson\&Gärtner, Peletier, Mielke, ...)

