#### Conference in honor of Professor Amari

# Riemannian interpretation of Wasserstein geometry

Felix Otto

Max Planck Institute for Mathematics in the Sciences

Leipzig, Germany





## Arnol'd '66: Geometrization of fluid dynamics

Euler's equations for incompressible inviscid fluid,  $x \in M = \mathbb{T}^d$ :

$$abla \cdot u = 0, \quad u = u(t,x) \in \mathbb{R}^d$$
 Eulerian velocity  $\partial_t u + u \cdot 
abla u + \nabla u + 
abla p = 0, \quad p = p(t,x) \in \mathbb{R}$  pressure

(Formal) Riemannian manifold:

$$\mathcal{M} := \{ \Phi \text{ diffeomorphism } | \Phi \# dx = dx \} \subset L^2(\mathbb{T}^d, \mathbb{R}^d)$$

For curve  $\Phi(t,\cdot)$  in  $\mathcal{M}$ , consider vector field  $u(t,\cdot)$  given by  $\partial_t \Phi(t,\cdot) = u(t,\cdot) \circ \Phi(t,\cdot)$ , then

 $\Phi$  is geodesic in  $\mathcal{M} \iff u$  satisfies Euler's equations

## Arnol'd '66: an easy calculation

Euler's equations:  $\nabla \cdot u = 0$ ,  $\partial_t u + u \cdot \nabla u + \nabla p = 0$ .

 $\mathcal{M} := \{ \Phi \text{ diffeomorphism } | \Phi \# dx = dx \}$ 

=  $\{\Phi \text{ diffeomorphism} \mid \det D\Phi \equiv 1\} \subset L^2(\mathbb{T}^d, \mathbb{R}^d).$ 

 $\Phi$  is geodesic in  $\mathcal{M} \iff u$  satisfies Euler's equations,

where  $\partial_t \Phi(t) = u(t) \circ \Phi(t)$ .

Liouville:  $\partial_t \det D\Phi(t) = (\nabla \cdot u)(t) \circ \phi(t) \det D\Phi(t)$ 

Acceler. Lagrange vs Euler:  $\partial_t^2 \Phi(t) = (\partial_t + u \cdot \nabla u)(t) \circ \Phi(t)$ .

## Arnol'd '66: curvature can get very negative ...

u satisfies Euler's equations  $\iff \Phi$  is geodesic in  $\mathcal{M}$  where  $\partial_t \Phi(t) = u(t) \circ \Phi(t)$ .

 $\mathcal{M} := \{ \Phi \text{ diffeom.} | \Phi \# dx = dx \}$ =  $\{ \Phi \text{ diffeom.} | \det D\Phi \equiv 1 \} \subset L^2(\mathbb{T}^d, \mathbb{R}^d).$ 

Tangent space in  $\Phi$ :  $T_{\Phi}\mathcal{M} = \{u \circ \Phi | \nabla \cdot u = 0\} \cong \{u | \nabla \cdot u = 0\}$ Liouville:  $\partial_t \det D\Phi(t) = (\nabla \cdot u)(t) \circ \phi(t) \det D\Phi(t)$ 

**Sectional curvature** of  $\mathcal{M}$  in plane  $u_1 - u_2$ 

$$R_{\Phi}(u_1,u_2) = \int A(u_1,u_1) \cdot A(u_2,u_2) - |A(u_1,u_2)|^2 dx$$
 where  $A(u,u) := \nabla p$  with  $p$  solving  $\nabla \cdot (u \cdot \nabla u + \nabla p) = 0$ 

... geodesics diverge, effective unpredictability of Euler

## Brenier '91: Projection onto $\mathcal{M}$ ...

 $M=(\mathbb{R}^d,d\mu)$  so that  $\mathcal{M}:=\{\Phi \text{ diffeomorphism}\,|\, \Phi\#d\mu=d\mu\}\subset L^2_\mu(\mathbb{R}^d,\mathbb{R}^d).$ 

Given  $g \in L^2_\mu(\mathbb{R}^d, \mathbb{R}^d)$  consider  $\inf_{\Phi \in \mathcal{M}} \|\Phi - g\|_{L^2_\mu}$ .

Existence & uniqueness, solution is of the form

 $g = \nabla \psi \circ \Phi$  with  $\psi$  convex.

multi  $-d \rightsquigarrow 1-d$ : amounts to monotone rearrangement nonlinear  $\rightsquigarrow$  linear: amounts to Helmholtz projection

... 

"polar factorization"

## Brenier '91: Connection to optimal transportation

Set  $\rho := g \# \mu$ , then

$$\begin{split} &\inf_{\Phi\in\mathcal{M}}\|\Phi-g\|_{L^2_\mu}^2\\ &=\inf\left\{\int_{\mathbb{R}^d}|g-\Phi|^2d\mu\,\Big|\,\Phi\colon\mathbb{R}^d\to\mathbb{R}^d, \Phi\#\mu=\mu\right\}\\ &=\inf\left\{\int_{\mathbb{R}^d}|\Psi(x)-x|^2\mu(dx)\,\Big|\,\\ &\Psi\colon\mathbb{R}^d\to\mathbb{R}^d, \Psi\#\mu=\rho\right\}\quad \text{Monge}\\ &=\inf\left\{\int_{\mathbb{R}^d\times\mathbb{R}^d}|x-y|^2\pi(dxdy)\,\Big|\,\pi \text{ has marginals }\mu,\rho\right\}\\ &=\sup\left\{\int(\frac{1}{2}|y|^2-\varphi(y))\rho(dy)+\int(\frac{1}{2}|x|^2-\psi(x))\mu(dx)\,\Big|\,\\ &\psi,\varphi\colon\mathbb{R}^d\to\mathbb{R}, \varphi(y)+\psi(x)\geq x\cdot y\right\}\quad \text{Kantorowicz}\\ &=W^2(\rho,\mu)\quad \text{Wasserstein metric} \end{split}$$

## McCann '97: displacement convexity

 $M=\mathbb{R}^d$ . For densities  $\rho_1$  and  $\rho_0$  related via  $ho_1=\Psi\#\rho_0$  with  $\Psi=\nabla\psi$ ,  $\psi$  convex, see Brenier consider curve  $\rho_s:=(s\Psi+(1-s)\mathrm{id})\#\rho_0$ ,  $s\in[0,1]$ .

It is a metric geodesic in arc length wrt Wasserstein:

$$W(\rho_0, \rho_s) = sW(\rho_0, \rho_1)$$
 and  $W(\rho_s, \rho_1) = (1-s)W(\rho_0, \rho_1)$ 

Consider functional on densities  $\rho$  of form  $E(\rho):=\int_{\mathbb{R}^d} U(\rho) dx$ . If U such that  $(0,\infty)\ni\lambda\mapsto\lambda^d U(\lambda^{-d})$  convex & decreasing then E is convex along these geodesics

since A symmetric positive semi-definite  $\mapsto (\det A)^{\frac{1}{d}}$  is concave

#### Barenblatt '52: nonlinear diffusions

Fix m>0. Consider  $\rho(t,x)\geq 0$  solution of  $\partial_t \rho - \triangle \rho^m=0$ , wlog  $\int \rho dx=1$ .

Admits self-similar solution  $\rho_*(t,x) = \frac{1}{t^{d\alpha}} \hat{\rho}_*(\frac{x}{t^{\alpha}})$  with  $\alpha := \frac{1}{2+(m-1)d}$ .

 $\rho_*$  describes asymptotic behavior of any solution  $\rho$ :  $t^{d\alpha}\rho(t,t^{\alpha}\widehat{x}) \stackrel{t\uparrow\infty}{\to} \widehat{\rho}_*(\widehat{x})$ 

Friedman & Kamin '80 based on Caffarelli & Friedman '79

## Otto '01: Formal Riemannian structure on space of probability measures

$$\mathcal{P} \widehat{=} \{ \rho : M \to [0, \infty) | \int_M \rho dx = 1 \} \text{ with metric tensor }$$
 
$$g_\rho(\delta \rho_1, \delta \rho_2) = \int_M \nabla \varphi_1 \cdot \nabla \varphi_2 \, d\rho$$

where  $\varphi_i$  solves elliptic equation  $-\nabla \cdot \rho \nabla \varphi_i = \delta \rho_i$ 

Connection to Arnol'd for  $M = \mathbb{T}^d$ :

The map  $\Pi \colon L^2(\mathbb{T}^d, \mathbb{R}^d) \to \mathcal{P}, \ \Phi \mapsto \rho = \Phi \# dx$  is Riemannian submersion,  $\Pi^{-1}\{dx\} = \mathcal{M}.$ 

Sectional curvature of  $\mathcal P$  in plane  $\nabla \varphi_1, \nabla \varphi_2$ 

$$R_{\rho}(\nabla \varphi_1, \nabla \varphi_2) = \int_{\mathbb{T}^d} |[\nabla \varphi_1, \nabla \varphi_2] - \nabla p|^2 d\rho$$

where p solves  $\nabla \cdot \rho([\nabla \varphi_1, \nabla \varphi_2] - \nabla p) = 0$  (O'Neill formula).

Note  $R \ge 0$  and  $\equiv 0$  if and only if d = 1.

#### Connections to Brenier and McCann

$$\mathcal{P} \widehat{=} \{ \rho : M \to [0,\infty) | \int \rho dx = 1 \} \text{ endowed with}$$
 
$$g_{\rho}(\delta \rho_1, \delta \rho_2) = \int_M \nabla \varphi_1 \cdot \nabla \varphi_2 \ d\rho$$
 where  $\varphi_i$  solves  $-\nabla \cdot \rho \nabla \varphi_i = \delta \rho_i$ 

## Connection to Brenier for $M = \mathbb{R}^d$ :

Wasserstein distance W= induced distance on  $\mathcal P$  (Benamou-Brenier '00)

Connection to McCann for  $M = \mathbb{R}^d$ : displacement convexity = (geodesic) convexity

#### Nonlinear diffusion = contraction in Wasserstein

## Connection to Barenblatt for $M = \mathbb{R}^d$ :

nonlinear diffusion  $\partial_t \rho - \triangle \rho^m = 0$  is **gradient flow on**  $\mathcal{P}$ 

of 
$$E(\rho)=\int_{\mathbb{R}^d}\!U(\rho)dx$$
 with  $U(\rho):=\left\{\begin{array}{ll} \frac{1}{m-1}\rho^m & m\neq 1\\ \rho\ln\rho & m=1 \end{array}\right\}$  (Jordan-Kinderlehrer-O.'97)

$$m \geq 1 - \frac{1}{d} \iff \lambda \mapsto \lambda^d U(\lambda^{-d}) \text{ convex } \iff E \text{ convex on } \mathcal{P}$$

Hence if 
$$\rho_i$$
,  $i=1,2$ , solve  $\partial_t \rho_i - \triangle \rho_i^m = 0$  then 
$$\frac{d}{dt} W^2(\rho_1(t,\cdot), \rho_2(t,\cdot)) \leq 0.$$

In particular 
$$W(t^{d\alpha}\rho(t,t^d\cdot),\widehat{\rho}_*) \leq t^{-2\alpha} \int_{\mathbb{R}^d} |x|^2 d\rho(t=0)$$

#### Connections with Ricci curvature

#### Theorem.

M (compact) d-dim. Riemannian manifold with  $Ric \geq 0$ .

For 
$$m\geq 1-\frac{1}{d}$$
 consider  $\partial_t\rho_i-\triangle\rho_i^m=0$  ,  $i=1,2.$  Then 
$$\frac{d}{dt}W^2(\rho_1(t,\cdot),\rho_2(t,\cdot))\leq 1.$$

- O.'01 for  $M = \mathbb{R}^d$ ,
- O.&Villani '00 for general M, m=1 (heuristics),

Cordero&McCann&Schmuckenschläger'01,

Sturm&v.Renesse '05 for general M, m=1 (necessity),

O.&Westdickenberg '05

## Calculus from differential geometry

Generalize to  $\partial_t \rho - \triangle \pi(\rho) = 0$ .

Induced distance → energy of curves: Given one-parameter

family 
$$\{\rho(s,\cdot)\}_{s\in[0,1]}$$
 of solutions  $\partial_t \rho(s,\cdot) - \triangle \pi(\rho(s,\cdot)) = 0$ .

Show 
$$\frac{d}{dt} \int_0^1 g_{\rho(s,\cdot)}(\partial_s \rho(s,\cdot), \partial_s \rho(s,\cdot)) ds \leq 0.$$

#### Infinitesimal version:

Suppose 
$$\partial_t \rho - \triangle \pi(\rho) = 0$$
 and  $\partial_t \delta \rho - \triangle (\pi'(\rho) \delta \rho) = 0$ .  
Show  $\frac{d}{dt} g_\rho(\delta \rho, \delta \rho) \leq 0$ .

Show 
$$\frac{d}{dt}g_{\rho}(\delta\rho,\delta\rho) \leq 0$$

## Reduction to single formula

#### Infinitesimal version:

Suppose  $\partial_t \rho - \triangle \pi(\rho) = 0$  and  $\partial_t \delta \rho - \triangle (\pi'(\rho) \delta \rho) = 0$ . Show  $\frac{d}{dt} g_\rho(\delta \rho, \delta \rho) \leq 0$ .

Explicit formula: For  $\partial_t \rho - \triangle \pi(\rho) = 0$ ,  $\partial_t \delta \rho - \triangle (\pi'(\rho) \delta \rho) = 0$  and  $\delta \rho = -\nabla \cdot (\rho \nabla \varphi)$  have

$$\frac{d}{dt} \int \frac{1}{2} |\nabla \varphi|^2 d\rho 
= -\int (\rho \pi'(\rho) - \pi(\rho)) (\Delta \varphi)^2 + \pi(\rho) (|D^2 \varphi|^2 + \nabla \varphi \cdot \text{Ric} \nabla \varphi) dx$$

Use  $(\triangle \varphi)^2 \le d|\mathsf{D}^2\varphi|^2$ , need  $\rho \pi'(\rho) - \pi(\rho) \ge \frac{1}{d}\pi(\rho) \ge 0$ 

## An easy calculation

$$\frac{d}{dt} \int \frac{1}{2} |\nabla \varphi|^2 d\rho \quad \text{eliminate } \partial_t \nabla \varphi 
= \int \varphi \partial_t \delta \rho - \frac{1}{2} |\nabla \varphi|^2 \partial_t \rho dx \quad \text{eliminate } \partial_t \delta \rho, \, \partial_t \rho 
= \int \pi'(\rho) \delta \rho \triangle \varphi - \pi(\rho) \triangle \frac{1}{2} |\nabla \varphi|^2 dx \quad \text{eliminate } \delta \rho 
= -\int \rho \pi'(\rho) (\triangle \varphi)^2 + \pi(\rho) (\triangle \frac{1}{2} |\nabla \varphi|^2 - \nabla \cdot (\triangle \varphi \nabla \varphi)) dx$$

Use Bochner's formula 
$$\triangle \frac{1}{2} |\nabla \varphi|^2 - \nabla \cdot (\triangle \varphi \nabla \varphi)$$
  
=  $|\mathsf{D}^2 \varphi|^2 + \nabla \varphi \cdot \mathsf{Ric} \nabla \varphi - (\triangle \varphi)^2$ 

Reminiscent of  $\Gamma_2$ -calculus of Bakry-Emery '84

### Past – present

Use Wasserstein contraction to give "synthetic" definition of Ric  $\geq$  0 on metric spaces M (Sturm, Lott-Villani, Ambrosio-Gigli-Savaré, ...)

Connections with Ricci flow (McCann-Topping, ...)

Regularity of Brenier map on smooth manifolds M (Caffarelli+, Trudinger+, Kim, Loeper, Figalli+, ...)

Large deviation principle of underlying particle system selects the good gradient flow structure (Dawson&Gärtner, Peletier, Mielke, ...)