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Arnol’'d '66: Geometrization of fluid dynamics

Euler's equations for incompressible inviscid fluid, z € M = T¢;

V-u=0, u=u(tz)eR? Eulerian velocity

o +u-Vu+Vp =0, p=pt,z)eR pressure

(Formal) Riemannian manifold:
M = {® diffeomorphism | ®#dz = dz} C L2(T% R%)

For curve d(t,-) in M, consider vector field u(t,-) given by
o P(t,-) = u(t,-) o P(¢,-), then

¢ is geodesic in M <= u satisfies Euler’'s equations



Arnol’d '66: an easy calculation

Euler’'s equations: V-u =0, oiu+ u-Vu-+ Vp=0.

M = {P diffeomorphism | P#dx = dx}
= {® diffeomorphism |detD® = 1} ¢ L2(T¢, RY).

¢ is geodesic in M < u satisfies Euler’'s equations,
where 0;P(t) = u(t) o P(t).

Liouville: gidetDP () = (V - u)(t) o ¢p(t) detDP(t)

Acceler. Lagrange vs Euler: 8152<D(t) = (Or +u-Vu)(t)od().




Arnol’'d '66: curvature can get very negative ...

v satisfies Euler’'s equations <— & is geodesic in M
where 9;P(t) = u(t) o P(¢).

M = {P diffeom. | P#dx = dzx}
= {® diffeom. |detD® = 1} C L2(T¢,R%).

Tangent spacein ®: TopM = {uoP|V-u = 0}={u|V - u = 0}
Liouville: didetDd(t) = (V - u)(t) o ¢(t) detDd(t)

Sectional curvature of M in plane u1 — u»o

Rep(uy,up) = /A(ULul) - A(ug, un) — |A(u1, u2)|?d
where A(u,uw) := Vp with p solving V-(u-Vu+Vp) =0

. geodesics diverge, effective unpredictability of Euler



Brenier '91: Projection onto M ...

M = (R4 du) so that
M := {® diffeomorphism | ®#dy = du} C L (R, RY).

Given g € LZ(R%, R?) consider  infgep||P — 9ll L2-

Existence & uniqueness, solution is of the form

g=Vyod with 1Y convex.

multi — d ~ 1 — d : amounts to monotone rearrangement

nonlinear ~~ linear : amounts to Helmholtz projection

. ~ ‘polar factorization”



Brenier '91: Connection to optimal transportation
Set p .= g#pu, then

inf [|d — ¢||?
CDEMH QHLﬁ

— inf{/Rd|g—<D\2d,u‘<D: Rd—>Rd,¢#u=u}
— inf{/Rd W (2) — 2|2 u(da)
w:RY 5 RE Wty = p} Monge
= inf { /Rded z — y|°m(dzdy) '7’(’ has marginals p, ,0}

=sup { [Glyl> = e@)rin) + [Glal* = v@)n(do)
v, 0: RY =R, o) + () > - y} Kantorowicz

= W?(p, ) Wasserstein metric



McCann '97: displacement convexity

M = R%, For densities p; and pg related via
p1 = WV#pg with W =V, ¢ convex, see Brenier

consider curve ps .= (sW 4 (1 —s)id)#pg, s € [0, 1].

It is a metric geodesic in arc length wrt Wasserstein:
W(pOnOS) — SW(IO07:01) and W(p87:01) = (1- 3>W(p07p1)

Consider functional on densities p of form E(p) := /RdU(p)dx.

If U such that (0,00) 3 A — AU (A~ %) convex & decreasing
then E is convex along these geodesics

1
since A symmetric positive semi-definite — (detA)d is concave



Barenblatt '52: nonlinear diffusions

Fix m > 0. Consider p(t,x) > 0 solution of 0Op — Ap™ = 0,
wlog [ pdx = 1.

Admits self-similar solution p«(t,z) = ﬂz%ﬁ*(t%)

p« describes asymptotic behavior of any solution p:

.t PPN
tdo o, t97) I13° 5, (2)

Friedman & Kamin '80 based on Caffarelli & Friedman '79



Otto '01: Formal Riemannian structure
on space of probability measures

P={p: M — [O,oo)|/M,0d:I; = 1} with metric tensor
9p(9p1,002) = [ Vi1 Vepo dp

where (p; solves elliptic equation —V - pV o, = dp;

Connection to Arnol'd for M = T¢:

The map MN: L2(T4 R%) = P, & — p = d#dr
is Riemannian submersion, N—1{dz} = M.

Sectional curvature of P in plane V1, Vs

Rp(Veo1, Vi) = | |[Ve1, Vipa] — Vp|2dp
where p solves V - p([Vp1, Vo] — Vp) = 0 (O'Neill formula).
Note R>0 and =0 if and only if d = 1.



Connections to Brenier and McCann

P={p: M — [0,00)]| J pdr = 1} endowed with

gp(dp1,0p2) = /MVSol - Vo dp
where ; solves —V - pV; = p;

Connection to Brenier for M = R¢:
Wasserstein distance W = induced distance on P

(Benamou-Brenier '00)

Connection to McCann for M = R%:
displacement convexity = (geodesic) convexity



Nonlinear diffusion = contraction in Wasserstein

Connection to Barenblatt for M = R9:
nonlinear diffusion Oip — Ap'™ = 0 is gradient flow on P

1 m

of E(p) = [,,U(p)dx with U(p) :={ m—1/ ™71
R plnp m=1

(Jordan-Kinderlehrer-O.'97)

m>1-1 <= X—=NUOM T convex <= E convex on P

1
- d
Hence if p;, i =1,2, solve O:p; — Ap!™ = 0 then

g ;
awz(pl(t,-)mz(t,-)) < 0.

In particular W (t%p(t,t%.), ps) < t_QO‘/Rd\x\de(t = 0)



Connections with Ricci curvature

T heorem.
M (compact) d-dim. Riemannian manifold with Ric > O.
For m > 1;% consider p; — Ap™ =0 , i=1,2.

O.'01 for M = R¢,

O.&Villani '00 for general M, m = 1 (heuristics),
Cordero&McCann&Schmuckenschlager'01,
Sturm&v.Renesse '05 for general M, m = 1 (necessity),
O.&Westdickenberg '05



Calculus from differential geometry
Generalize to 9p — An(p) = 0.

Induced distance ~» energy of curves:. Given one-parameter

family {p(s, ’)}36[0,1] of solutions Op(s, ) —Anm(p(s,-)) = 0.
d 1

Show g, (. 1(Dsp(s.), Dspls.))ds < O.

Infinitesimal version:

Suppose O — Arn(p) =0 and Op — A(7'(p)dp) = 0.

d
Show agp(cs,o, op) < 0.



Reduction to single formula

Infinitesimal version:

Suppose O — An(p) =0 and Odp — A(7'(p)dp) = 0.

d
Show agp(csp, op) < 0.

Explicit formula: For d;p — An(p) =0, 6dp — A(7'(p)ip) =0

and o = -V - (pVy) have

d 1 5
— [ 21V l|?d
o 2| p|“dp

— / (o' (p) — m(p)) (Lp)?

7(p)(|D? |2

Vo - RicVy)dr

Use (Ap)? < d|D?p|?, need pr’(p) — m(p) > 5m(p) >0



An easy calculation

d

£/%\V90\2dp eliminate 6;V

= /goat(Sp — %|V90|28tpda: eliminate 9:dp, d¢p

— /71"(p>5pAg0 — w(p)A%\V@\Qdaf; eliminate dp

= — [ o7 (0)(29)? + 7(0)(A3VE|? = V - (ApVp))da

Use Bochner’s formula A%|Vg0|2 — V- (ApV)
= |D?p|2 4+ Vi - RicVp — (Ap)?

Reminiscent of [ »-calculus of Bakry-Emery '84



Past — present

Use Wasserstein contraction to give
“synthetic” definition of Ric > 0 on metric spaces M
(Sturm, Lott-Villani, Ambrosio-Gigli-Savaré, ...)

Connections with Ricci flow (McCann-Topping, ...)

Regularity of Brenier map on smooth manifolds M
(Caffarelli4, Trudinger+4, Kim, Loeper, Figalli4, ...)

LLarge deviation principle of underlying particle system
selects the good gradient flow structure
(Dawson& Gartner, Peletier, Mielke, ...)



