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Overview 

• Nonlinear Filtering (recursive Bayesian estimation) 

– The need for a proper state space for posterior distributions 

• The infinite-dimensional Hilbert manifold of probability 

measures, M, (and Banach variants) 

• An M-valued Itô stochastic differential equation for the 

nonlinear filter 

• Information geometric properties of the nonlinear filter 
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Nonlinear Filtering 

• Markov “signal” process: 

–           is a metric space, with reference probability measure m 

– Eg.  

• Partial “observation” process: 
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Nonlinear Filtering 

• Markov “signal” process: 

–           is a metric space, with reference probability measure m 

– Eg.  

• Partial “observation” process: 

 

 

• Estimate Xt at each time t from its prior distribution Pt and 

the history of the observation: 

 

• The linear-Gaussian case yields the Kalman-Bucy filter 
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• Regular conditional (posterior) distribution: 

 

•      is a random probability measure evolving on          .  

How should we represent it? 
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• Regular conditional (posterior) distribution: 

 

•      is a random probability measure evolving on          .  

How should we represent it? 

• We could consider the conditional density (w.r.t m), pt 

– typical differential equation (Shiriyayev, Wonham, Stratonovich, 

Kushner): 

• Spaces of densities are not necessarily optimal 
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Mean-Square Errors 

• Suppose                      for some                  

• Then                  minimises the mean-square error 
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• Suppose                      for some                  

• Then                  minimises the mean-square error 

 

 

• If                  for some                       , and                   then 

 

 and so the L2(m) norm on densities may be useful 
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• Suppose                      for some                  

• Then                  minimises the mean-square error 

 

 

• If                  for some                       , and                   then 

 

 and so the L2(m) norm on densities may be useful 

• Not if  f = 1B and t(B) is very small (Eg. fault detection) 
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• Suppose                      for some                  

• Then                  minimises the mean-square error 

 

 

• If                  for some                       , and                   then 

 

 and so the L2(m) norm on densities may be useful 

• Not if  f = 1B and t(B) is very small (Eg. fault detection) 

• When topologised in this way, P (X) has a boundary 
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Multi-Objective Mean-Square Errors 

• Maximising the L2 error over square-integrable functions 
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Multi-Objective Mean-Square Errors 

• Maximising the L2 error over square-integrable functions 

 

 

 

 

 

 where                                                     

• In time-recursive approximations, the accuracy of       is 

affected by that of       (s < t).  This naturally induces 

multi-objective criteria at time s (nonlinear dynamics). 
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Geometric Sensitivity 

• M is “geometrically sensitive”.  (It requires small probabilities to 

be approximated with greater absolute accuracy than large probabilities) 

• When topologised by M, P (X) does not have a boundary 
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Geometric Sensitivity 

• M is “geometrically sensitive”.  (It requires small probabilities to 

be approximated with greater absolute accuracy than large probabilities) 

• When topologised by M, P (X) does not have a boundary 

• This is highly desirable in the context of recursive 

Bayesian estimation, where conditional probabilities are 

repeatedly multiplied by the likelihood functions of new 

observations. 
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Geometric Sensitivity 

• M is “geometrically sensitive”.  (It requires small probabilities to 

be approximated with greater absolute accuracy than large probabilities.) 

• When topologised by M, P (X) does not have a boundary. 

• This is highly desirable in the context of recursive 

Bayesian estimation, where conditional probabilities are 

repeatedly multiplied by the likelihood functions of new 

observations. 

• M is Pearson’s c 2 divergence.  It belongs to the one-

parameter family of a-divergences: 
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Geometric Sensitivity 

• M is “geometrically sensitive”.  (It requires small probabilities to 

be approximated with greater absolute accuracy than large probabilities.) 

• When topologised by M, P (X) does not have a boundary. 

• This is highly desirable in the context of recursive 

Bayesian estimation, where conditional probabilities are 

repeatedly multiplied by the likelihood functions of new 

observations. 

• M is Pearson’s c 2 divergence.  It belongs to the one-

parameter family of a-divergences: 

• It is too restrictive to use in practice 
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• As |a | becomes larger       becomes increasingly 

“geometrically sensitive” 

• The case a = 0  yields the Hellinger metric 

a-Divergences 

aD
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• As |a | becomes larger       becomes increasingly 

“geometrically sensitive” 

• The case a = 0  yields the Hellinger metric 

• The case a = ±1  yields the KL-Divergence: 

 

 

• This is widely used in practice. 
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• As |a | becomes larger       becomes increasingly 

“geometrically sensitive” 

• The case a = 0  yields the Hellinger metric 

• The case a = ±1  yields the KL-Divergence: 

 

 

• This is widely used in practice. 

• Symmetric error criteria may be appropriate, such as 
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Connections with Information Theory 

• Conditional mutual information (un-averaged): 

 

• Additivity property: 
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Connections with Information Theory 

• Conditional mutual information (unaveraged): 

 

• Additivity property: 

 

• Information Supply to the nonlinear filter: 

 

• The filter continuously fuses new observation information 
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Appropriate Metrics on P (X)  

• The KL divergence is bilinear in the density and its log 
(regarded as elements of dual spaces of functions). 

• For                      with P, Q << m 

  

 where p and q are the densities  
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Appropriate Metrics on P (X)  

• The KL divergence is bilinear in the density and its log 
(regarded as elements of dual spaces of functions). 

• For                      with P, Q << m 

  

 where p and q are the densities 

• So we would like the metric to “control” both p and log p  
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Maximal Exponential Model 
(G. Pistone et al.) 

•   

• Model space (exponential Orlicz): 
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Maximal Exponential Model 
(G. Pistone et al.) 

•   

• Model space (exponential Orlicz): 

 

 

• Global Chart: sm: E(m)  Bm 
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Maximal Exponential Model 
(G. Pistone et al.) 

•   

• Model space (exponential Orlicz): 

 

 

• Global Chart: sm: E(m)  Bm 

 

 

• Mixture Map: hm: E(m)  *Bm 

 

 

    Injective and of class C, but not homeomorphic 

  NJN U of E 2016 
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The Hilbert Manifold M 
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• M  is the subset of P (X) whose members have the 

following properties: 
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The Hilbert Manifold M 
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• M  is the subset of P (X) whose members have the 

following properties: 

 

• Model space: 

 

• Global Chart: f : M  H 
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The Hilbert Manifold M 
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• M  is the subset of P (X) whose members have the 

following properties: 

 

• Model space: 

 

• Global Chart: f : M  H 

 

• Proposition 1: f is a bijection onto H 
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M as a Generalised Exponential Family 

• The exponential function is replaced by the inverse of 

the function (0, ) ' y   y  1 + log y  R: 
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M as a Generalised Exponential Family 

• The exponential function is replaced by the inverse of 

the function (0, ) ' y   y  1 + log y  R: 

 

 

 

 

 

 

 

• Convex, linear growth, bounded derivatives of all orders. 
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Mixture and Exponential Maps 

• The maps                   , defined by 

 

 are injective, but not homeomorphic (like hm of E(m)) 
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Mixture and Exponential Maps 

• The maps                   , defined by 

 

 are injective, but not homeomorphic (like hm of E(m)) 

• They satisfy: 

 

• So that 

 

 and 
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The Tangent Bundle 

• Global Chart:  F : TM  HH 
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The Tangent Bundle 

• Global Chart:  F : TM  HH 

 

• m and e representations: 

 

    Injective but not homeomorphic 
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The Tangent Bundle 

• Global Chart:  F : TM  HH 

 

• m and e representations: 

 

    Injective but not homeomorphic 

• The Fisher metric: 
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The Tangent Bundle 

• Global Chart:  F : TM  HH 

 

• m and e representations: 

 

    Injective but not homeomorphic 

• The Fisher metric: 

 

• (TPM, < · , · >) is an inner product space with           
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e and m Parallel Transport 

• These are obtained by considering the inclusions: 

 

    together with the parallel transport on HH defined by: 
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e and m Parallel Transport 

• These are obtained by considering the inclusions: 

 

    together with the parallel transport on HH defined by: 

 

• Like the m parallel transport on the maximal exponential 

model, they coincide with m parallel transport on the 

tangent bundle only in special cases. 

•  a-parallel transports can be defined in the same way on 

statistical Hilbert bundles. 
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Submanifolds 

Like the maximal exponential model, M  admits many 

useful submanifolds.  For example… 

• Proposition 2:  If N  M  is a finite-dimensional 

exponential family, then it is a C-embedded submanifold 
of M, on which m, e and D are of class C 
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Submanifolds 

Like the maximal exponential model, M  admits many 

useful submanifolds.  For example… 

• Proposition 2:  If N  M  is a finite-dimensional 

exponential family, then it is a C-embedded submanifold 
of M, on which m, e and D are of class C 

• Example: the non-singular Gaussian measures on Rm 

form a C-embedded submanifold of M(Rm, m), where 
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Submanifolds 

Like the maximal exponential model, M  admits many 

useful submanifolds.  For example… 

• Proposition 2:  If N  M  is a finite-dimensional 

exponential family, then it is a C-embedded submanifold 
of M, on which m, e and D are of class C 

• Example: the non-singular Gaussian measures on Rm 

form a C-embedded submanifold of M(Rm, m), where 

 

• Similar results hold for mixture models and a-models 

• Subspaces of H also provide natural submanifolds of M 
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Banach Variants 

• The a-divergences are twice differentiable on M. 

• Greater regularity can be obtained by the use of stronger 

topologies on the model space: Ll(m), for l  2 

• This enables the definition of a-covariant derivatives on 

the statistical bundles mentioned above. 

• Details in: 

 N.J. Newton, Infinite-dimensional statistical manifolds based on a balanced 

chart, Bernoulli 22, 711-731 (2016) 
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Nonlinear Filtering 

• Markov “signal” process: 

–           is a metric space, with reference probability measure m 

– Eg.  

• Partial “observation” process: 

 

• Estimate Xt at each time t from its prior distribution Pt and 

the history of the observation: 

 

• Typical equation for the density: 
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Proposition 3: Under some technical conditions: 

1.    
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Proposition 3: Under some technical conditions: 

1.    

2. The coordinate representation f() satisfies the 

following (infinite-dimensional) Itô equation 

 

     where 
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• Since H is of countable dimension, it admits a complete 

orthonormal basis (hi, i = 1, 2, 3, …) 

• So the filter equations can be written in terms of the 

components: 
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• Since H is of countable dimension, it admits a complete 

orthonormal basis (hi, i = 1, 2, 3, …) 

• So the filter equations can be written in terms of the 

components: 

 

• The Fisher metric can be expressed in terms of the (hi) 
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• Since H is of countable dimension, it admits a complete 

orthonormal basis (hi, i = 1, 2, 3, …) 

• So the filter equations can be written in terms of the 

components: 

 

• The Fisher metric can be expressed in terms of the (hi) 

 

    where                         ,                                and   

• The basis can be chosen to suit the problem (wavelets) 

• Truncated series could be used in approximations 
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Quadratic Variation 

• Semimartingales on M  have well-defined quadratic 

variation in the Fisher metric; in particular 
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Quadratic Variation 

• Semimartingales on M  have well-defined quadratic 

variation in the Fisher metric; in particular 

 

• Proposition 4:  Under the conditions of Proposition 3: 
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Quadratic Variation 

• Semimartingales on M  have well-defined quadratic 

variation in the Fisher metric; in particular 

 

• Proposition 4:  Under the conditions of Proposition 3: 

 

 

• Results of this type are of interest in Non-equilibrium 

Statistical Mechanics, where interactions between 

systems set up “flows of entropy”. 
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Finite Dimensional Filters 

• A number of filters are known to evolve on finite-

dimensional exponential manifolds (Kalman-Bucy, 

Benes…) 
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Finite Dimensional Filters 

• A number of filters are known to evolve on finite-

dimensional exponential manifolds (Kalman-Bucy, 

Benes…) 

• Proposition 5: Under some technical conditions,  is the 

unique strong solution of the following intrinsic 

Stratonovich equation on such a manifold: 

 

 

    where         is Amari’s (1)-covariant derivative, and U  

    and V are suitably regular, time-dependent vector fields. 
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Projections onto Submanifolds 
(Brigo, Pistone, Hanzon, Le Gland, Armstrong…) 

1. Choose a suitable C2-embedded finite-dimensional 

submanifold N  M. 

2. The tangent space TPN is complete w.r.t. the Fisher 

metric. 

3. Evaluate ut  zt and vt at points of N.  (These are tangent 

vectors of M.) 

4. Project onto TPN in the Fisher metric to obtain an 

evolution equation on N. 
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Projections onto Submanifolds 
(Brigo, Pistone, Hanzon, Le Gland, Armstrong…) 

1. Choose a suitable C2-embedded finite-dimensional 

submanifold N  M. 

2. The tangent space TPN is complete w.r.t. the Fisher 

metric. 

3. Evaluate ut  zt and vt at points of N.  (These are tangent 

vectors of M.) 

4. Project onto TPN in the Fisher metric to obtain an 

evolution equation on N. 

• The Hilbert manifold is very suited to this purpose 

• One could also project in the model space metric 
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Details in: 
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