Information Geometric Nonlinear Filtering: a Hilbert Space Approach

Nigel Newton (University of Essex)
Information Geometry and its Applications IV, Liblice, June 2016

In honour of Shun-ichi Amari on the occasion of his $80^{\text {th }}$ birthday

Overview

- Nonlinear Filtering (recursive Bayesian estimation)
- The need for a proper state space for posterior distributions
- The infinite-dimensional Hilbert manifold of probability measures, M, (and Banach variants)
- An M-valued Itô stochastic differential equation for the nonlinear filter
- Information geometric properties of the nonlinear filter

Nonlinear Filtering

- Markov "signal" process: $\left(X_{t} \in \mathbf{X}, t \in[0, \infty)\right)$
$-(\mathbf{X}, \mu)$ is a metric space, with reference probability measure μ
- Eg. $\mathbf{X}=\mathrm{R}^{d}, \mu=N(0, I)$
- Partial "observation" process: $\left(Y_{t} \in \mathrm{R}, t \in[0, \infty)\right)$

$$
Y_{t}=\int_{0}^{t} h\left(X_{s}\right) d s+W_{t}
$$

Nonlinear Filtering

- Markov "signal" process: $\left(X_{t} \in \mathbf{X}, t \in[0, \infty)\right)$
$-(\mathbf{X}, \mu)$ is a metric space, with reference probability measure μ
- Eg. $\mathbf{X}=\mathrm{R}^{d}, \mu=N(0, I)$
- Partial "observation" process: $\left(Y_{t} \in \mathrm{R}, t \in[0, \infty)\right)$

$$
Y_{t}=\int_{0}^{t} h\left(X_{s}\right) d s+W_{t}
$$

- Estimate X_{t} at each time t from its prior distribution P_{t} and the history of the observation:

$$
Y_{0}^{t}:=\left(Y_{s}, s \in[0, t]\right)
$$

- The linear-Gaussian case yields the Kalman-Bucy filter

Nonlinear Filtering

- Regular conditional (posterior) distribution: $\Pi_{t}: \Omega \rightarrow \mathscr{P}(\mathbf{X})$

$$
\Pi_{t}(B)=\mathbf{P}\left(X_{t} \in B \mid Y_{0}^{t}\right)
$$

- Π_{t} is a random probability measure evolving on $\mathbb{P}(\mathbf{X})$. How should we represent it?

Nonlinear Filtering

- Regular conditional (posterior) distribution: $\Pi_{t}: \Omega \rightarrow \mathcal{P}(\mathbf{X})$

$$
\Pi_{t}(B)=\mathbf{P}\left(X_{t} \in B \mid Y_{0}^{t}\right)
$$

- Π_{t} is a random probability measure evolving on $\mathscr{P}(\mathbf{X})$. How should we represent it?
- We could consider the conditional density (w.r.t μ), π_{t}
- typical differential equation (Shiriyayev, Wonham, Stratonovich, Kushner):

$$
" d \pi_{t}=\mathcal{A} \pi_{t} d t+\pi_{t}\left(h-\bar{h}_{t}\right)\left(d Y_{t}-\bar{h}_{t} d t\right) \quad\left(\bar{h}_{t}:=\int h(x) \Pi_{t}(d x)\right)
$$

- Spaces of densities are not necessarily optimal

Mean-Square Errors

- Suppose $\mathbf{E} f\left(X_{t}\right)^{2}<\infty$ for some $f: \mathbf{X} \rightarrow \mathrm{R}$
- Then $\bar{f}_{t}:=\mathrm{E}_{\Pi_{t}} f$ minimises the mean-square error

$$
\begin{array}{r}
\mathbf{E}\left(f\left(X_{t}\right)-\hat{f}_{t}\right)^{2}=\mathbf{E}\left(\mathrm{E}_{\Pi_{t}}\left(f-\bar{f}_{t}\right)^{2}+\left(\bar{f}_{t}-\hat{f}_{t}\right)^{2}\right) \\
\text { estimation error }+ \text { approximation error }
\end{array}
$$

Mean-Square Errors

- Suppose $\mathbf{E} f\left(X_{t}\right)^{2}<\infty$ for some $f: \mathbf{X} \rightarrow \mathrm{R}$
- Then $\bar{f}_{t}:=\mathrm{E}_{\Pi_{t}} f$ minimises the mean-square error

$$
\begin{array}{r}
\mathbf{E}\left(f\left(X_{t}\right)-\hat{f}_{t}\right)^{2}=\mathbf{E}\left(\mathbf{E}_{\Pi_{t}}\left(f-\bar{f}_{t}\right)^{2}+\left(\bar{f}_{t}-\hat{f}_{t}\right)^{2}\right) \\
\text { estimation error }+ \text { approximation error }
\end{array}
$$

- If $\hat{f}_{t}=\mathrm{E}_{\hat{\Pi}_{t}} f$ for some $\hat{\Pi}_{t}: \Omega \rightarrow \mathscr{P}(X)$, and $\Pi_{t}, \hat{\Pi}_{t} \ll \mu$ then

$$
\left(\bar{f}_{t}-\hat{f}_{t}\right)^{2} \leq \mathrm{E}_{\mu} f^{2} \mathrm{E}_{\mu}\left(\pi_{t}-\hat{\pi}_{t}\right)^{2}
$$

and so the $L^{2}(\mu)$ norm on densities may be useful

Mean-Square Errors

- Suppose $\mathbf{E} f\left(X_{t}\right)^{2}<\infty$ for some $f: \mathbf{X} \rightarrow \mathrm{R}$
- Then $\bar{f}_{t}:=\mathrm{E}_{\Pi_{t}} f$ minimises the mean-square error

$$
\begin{array}{r}
\mathbf{E}\left(f\left(X_{t}\right)-\hat{f}_{t}\right)^{2}=\mathbf{E}\left(\mathbf{E}_{\Pi_{t}}\left(f-\bar{f}_{t}\right)^{2}+\left(\bar{f}_{t}-\hat{f}_{t}\right)^{2}\right) \\
\text { estimation error }+ \text { approximation error }
\end{array}
$$

- If $\hat{f}_{t}=\mathrm{E}_{\hat{\Pi}_{t}} f$ for some $\hat{\Pi}_{t}: \Omega \rightarrow \mathcal{P}(X)$, and $\Pi_{t}, \hat{\Pi}_{t} \ll \mu$ then

$$
\left(\bar{f}_{t}-\hat{f}_{t}\right)^{2} \leq \mathrm{E}_{\mu} f^{2} \mathrm{E}_{\mu}\left(\pi_{t}-\hat{\pi}_{t}\right)^{2}
$$

and so the $L^{2}(\mu)$ norm on densities may be useful

- Not if $f=1_{B}$ and $\Pi_{t}(B)$ is very small (Eg. fault detection)

Mean-Square Errors

- Suppose $\mathbf{E} f\left(X_{t}\right)^{2}<\infty$ for some $f: \mathbf{X} \rightarrow \mathrm{R}$
- Then $\bar{f}_{t}:=\mathrm{E}_{\Pi_{t}} f$ minimises the mean-square error

$$
\mathbf{E}\left(f\left(X_{t}\right)-\hat{f}_{t}\right)^{2}=\mathbf{E}\left(\mathrm{E}_{\Pi_{t}}\left(f-\bar{f}_{t}\right)^{2}+\left(\bar{f}_{t}-\hat{f}_{t}\right)^{2}\right)
$$

$$
\text { estimation error }+ \text { approximation error }
$$

- If $\hat{f}_{t}=\mathrm{E}_{\hat{\Pi}_{t}} f$ for some $\hat{\Pi}_{t}: \Omega \rightarrow \mathcal{P}(X)$, and $\Pi_{t}, \hat{\Pi}_{t} \ll \mu$ then

$$
\left(\bar{f}_{t}-\hat{f}_{t}\right)^{2} \leq \mathrm{E}_{\mu} f^{2} \mathrm{E}_{\mu}\left(\pi_{t}-\hat{\pi}_{t}\right)^{2}
$$

and so the $L^{2}(\mu)$ norm on densities may be useful

- Not if $f=1_{B}$ and $\Pi_{t}(B)$ is very small (Eg. fault detection)
- When topologised in this way, $\mathscr{P}(\mathbf{X})$ has a boundary

Multi-Objective Mean-Square Errors

- Maximising the L^{2} error over square-integrable functions

$$
\begin{aligned}
\mathscr{M}\left(\hat{\Pi}_{t} \mid \Pi_{t}\right) & :=\sup _{f \in L^{2}\left(\Pi_{t}\right)} \frac{\left(\bar{f}_{t}-\hat{f}_{t}\right)^{2}}{\mathrm{E}_{\Pi_{t}}\left(f-\bar{f}_{t}\right)^{2}} \quad\left(\frac{\text { approximation eror }}{\text { estination eror }}\right) \\
& =\sup _{f \in F}\left(\mathrm{E}_{\Pi_{t}} f\left(1-d \hat{\Pi}_{t} / d \Pi_{t}\right)\right)^{2} \\
& =\mathrm{E}_{\Pi_{t}}\left(1-d \Pi_{t} / d \Pi_{t}\right)^{2}
\end{aligned}
$$

where $F:=\left\{f \in L^{2}\left(\Pi_{t}\right): \bar{f}_{t}=0, \mathrm{E}_{\Pi_{t}} f^{2}=1\right\}$

Multi-Objective Mean-Square Errors

- Maximising the L^{2} error over square-integrable functions

$$
\begin{aligned}
\mathcal{M}\left(\hat{\Pi}_{t} \mid \Pi_{t}\right) & :=\sup _{f \in L^{2}\left(\Pi_{t}\right)} \frac{\left(\bar{f}_{t}-\hat{f}_{t}\right)^{2}}{\mathrm{E}_{\Pi_{t}}\left(f-\bar{f}_{t}\right)^{2}} \\
& =\sup _{f \in F}\left(\mathrm{E}_{\Pi_{t}} f\left(1-d \hat{\Pi}_{t} / d \Pi_{t}\right)\right)^{2} \\
& =\mathrm{E}_{\Pi_{t}}\left(1-d \hat{\Pi}_{t} / d \Pi_{t}\right)^{2}
\end{aligned}
$$

where $F:=\left\{f \in L^{2}\left(\Pi_{t}\right): \bar{f}_{t}=0, \mathrm{E}_{\Pi_{t}} f^{2}=1\right\}$

- In time-recursive approximations, the accuracy of $\hat{\Pi}_{t}$ is affected by that of $\hat{\Pi}_{s}(s<t)$. This naturally induces multi-objective criteria at time s (nonlinear dynamics).

Geometric Sensitivity

- \mathcal{M} is "geometrically sensitive". (It requires small probabilities to be approximated with greater absolute accuracy than large probabilities)
- When topologised by $\mathcal{M}, \mathscr{P}(\mathbf{X})$ does not have a boundary

Geometric Sensitivity

- \mathcal{M} is "geometrically sensitive". (It requires small probabilities to be approximated with greater absolute accuracy than large probabilities)
- When topologised by $\mathfrak{M}, \mathscr{P}(\mathbf{X})$ does not have a boundary
- This is highly desirable in the context of recursive Bayesian estimation, where conditional probabilities are repeatedly multiplied by the likelihood functions of new observations.

Geometric Sensitivity

- \mathcal{M} is "geometrically sensitive". (It requires small probabilities to be approximated with greater absolute accuracy than large probabilities.)
- When topologised by $\mathcal{M}, \mathscr{P}(\mathbf{X})$ does not have a boundary.
- This is highly desirable in the context of recursive Bayesian estimation, where conditional probabilities are repeatedly multiplied by the likelihood functions of new observations.
- \mathcal{M} is Pearson's χ^{2} divergence. It belongs to the oneparameter family of α-divergences: $\mathcal{M}=\mathcal{D}_{-3}$

Geometric Sensitivity

- \mathcal{M} is "geometrically sensitive". (It requires small probabilities to be approximated with greater absolute accuracy than large probabilities.)
- When topologised by $\mathcal{M}, \mathscr{P}(\mathbf{X})$ does not have a boundary.
- This is highly desirable in the context of recursive Bayesian estimation, where conditional probabilities are repeatedly multiplied by the likelihood functions of new observations.
- \mathcal{M} is Pearson's χ^{2} divergence. It belongs to the oneparameter family of α-divergences: $\mathcal{M}=\mathcal{D}_{-3}$
- It is too restrictive to use in practice

α-Divergences

- As $|\alpha|$ becomes larger \mathcal{D}_{α} becomes increasingly "geometrically sensitive"
- The case $\alpha=0$ yields the Hellinger metric

α-Divergences

- As $|\alpha|$ becomes larger \mathcal{D}_{α} becomes increasingly "geometrically sensitive"
- The case $\alpha=0$ yields the Hellinger metric
- The case $\alpha= \pm 1$ yields the KL-Divergence:

$$
\mathscr{D}(P \mid Q):=\mathscr{D}_{-1}(P \mid Q)=\mathrm{E}_{Q} \frac{d P}{d Q} \log \frac{d P}{d Q}
$$

- This is widely used in practice.

α-Divergences

- As $|\alpha|$ becomes larger \mathcal{D}_{α} becomes increasingly "geometrically sensitive"
- The case $\alpha=0$ yields the Hellinger metric
- The case $\alpha= \pm 1$ yields the KL-Divergence:

$$
\mathcal{D}(P \mid Q):=\mathcal{D}_{-1}(P \mid Q)=\mathrm{E}_{Q} \frac{d P}{d Q} \log \frac{d P}{d Q}
$$

- This is widely used in practice.
- Symmetric error criteria may be appropriate, such as

$$
\mathscr{D}\left(\hat{\Pi}_{t} \mid \Pi_{t}\right)+\mathscr{D}\left(\Pi_{t} \mid \hat{\Pi}_{t}\right)
$$

Connections with Information Theory

- Conditional mutual information (un-averaged):

$$
I(X ; Y \mid Z):=\mathcal{D}\left(P_{X Y \mid Z} \mid P_{X \mid Z} \otimes P_{Y \mid Z}\right)
$$

- Additivity property:

$$
I(X ;(Y, Z))=I(X ; Z)+\mathbf{E} I(X ; Y \mid Z)
$$

Connections with Information Theory

- Conditional mutual information (unaveraged):

$$
I(X ; Y \mid Z):=\mathcal{D}\left(P_{X Y \mid Z} \mid P_{X \mid Z} \otimes P_{Y \mid Z}\right)
$$

- Additivity property:

$$
I(X ;(Y, Z))=I(X ; Z)+\mathbf{E} I(X ; Y \mid Z)
$$

- Information Supply to the nonlinear filter:

$$
S(t):=I\left(X ; Y_{0}^{t}\right)
$$

- The filter continuously fuses new observation information

$$
S(t)=S(s)+\mathbf{E} I\left(X ; Y_{s}^{t} \mid Y_{0}^{s}\right)
$$

Appropriate Metrics on $\mathscr{P}(\mathbf{X})$

- The KL divergence is bilinear in the density and its log (regarded as elements of dual spaces of functions).
- For $P, Q \in \mathscr{P}(\mathbf{X})$ with $P, Q \ll \mu$

$$
\mathcal{D}(P \mid Q)=\langle p, \log p\rangle-\langle p, \log q\rangle
$$

where p and q are the densities

Appropriate Metrics on $\mathscr{P}(\mathbf{X})$

- The KL divergence is bilinear in the density and its log (regarded as elements of dual spaces of functions).
- For $P, Q \in P(\mathbf{X})$ with $P, Q \ll \mu$

$$
\mathcal{D}(P \mid Q)=\langle p, \log p\rangle-\langle p, \log q\rangle
$$

where p and q are the densities

- So we would like the metric to "control" both p and $\log p$

Maximal Exponential Model

(G. Pistone et al.)

- $\mathcal{E}(\mu)=\left\{P \in \mathscr{P}(\mathbf{X}): p=\exp \left(a-K_{\mu}(a)\right) \mid a \in S_{\mu}\right\}$
- Model space (exponential Orlicz):

$$
B_{\mu}=\left\{a: \mathbf{X} \rightarrow \mathrm{R}: \mathrm{E}_{\mu} a=0, \mathrm{E}_{\mu} \cosh (\alpha a)<\infty \text { for some } \alpha>0\right\}
$$

Maximal Exponential Model

(G. Pistone et al.)

- $\mathcal{E}(\mu)=\left\{P \in \mathcal{P}(\mathbf{X}): p=\exp \left(a-K_{\mu}(a)\right) \mid a \in S_{\mu}\right\}$
- Model space (exponential Orlicz):

$$
B_{\mu}=\left\{a: \mathbf{X} \rightarrow \mathrm{R}: \mathrm{E}_{\mu} a=0, \mathrm{E}_{\mu} \cosh (\alpha a)<\infty \text { for some } \alpha>0\right\}
$$

- Global Chart: $s_{\mu}: \varepsilon(\mu) \rightarrow B_{\mu}$

$$
s_{\mu}(P):=\log (p)-\mathrm{E}_{\mu} \log (p)
$$

Maximal Exponential Model

 (G. Pistone et al.)- $\mathcal{E}(\mu)=\left\{P \in \mathscr{P}(\mathbf{X}): p=\exp \left(a-K_{\mu}(a)\right) \mid a \in S_{\mu}\right\}$
- Model space (exponential Orlicz):

$$
B_{\mu}=\left\{a: \mathbf{X} \rightarrow \mathrm{R}: \mathrm{E}_{\mu} a=0, \mathrm{E}_{\mu} \cosh (\alpha a)<\infty \text { for some } \alpha>0\right\}
$$

- Global Chart: $s_{\mu}: \varepsilon(\mu) \rightarrow B_{\mu}$

$$
s_{\mu}(P):=\log (p)-\mathrm{E}_{\mu} \log (p)
$$

- Mixture Map: $\eta_{\mu}: \mathcal{E}(\mu) \rightarrow{ }^{*} B_{\mu}$

$$
\eta_{\mu}(P):=p-1
$$

Injective and of class C^{∞}, but not homeomorphic

The Hilbert Manifold M

- M is the subset of $\mathscr{P}(\mathbf{X})$ whose members have the following properties:

$$
P \sim \mu, \quad \mathrm{E}_{\mu} p^{2}<\infty \quad \text { and } \quad \mathrm{E}_{\mu} \log ^{2} p<\infty
$$

The Hilbert Manifold M

- M is the subset of $\mathscr{P}(\mathbf{X})$ whose members have the following properties:

$$
P \sim \mu, \quad \mathrm{E}_{\mu} p^{2}<\infty \quad \text { and } \quad \mathrm{E}_{\mu} \log ^{2} p<\infty
$$

- Model space:

$$
H=L_{0}^{2}(\mu)=\left\{a: \mathbf{X} \rightarrow \mathrm{R}: \mathrm{E}_{\mu} a=0, \mathrm{E}_{\mu} a^{2}<\infty\right\}
$$

- Global Chart: $\phi: M \rightarrow H$

$$
\phi(P):=p-1+\log p-\mathrm{E}_{\mu} \log p
$$

The Hilbert Manifold M

- M is the subset of $\mathscr{P}(\mathbf{X})$ whose members have the following properties:

$$
P \sim \mu, \quad \mathrm{E}_{\mu} p^{2}<\infty \quad \text { and } \quad \mathrm{E}_{\mu} \log ^{2} p<\infty
$$

- Model space:

$$
H=L_{0}^{2}(\mu)=\left\{a: \mathbf{X} \rightarrow \mathrm{R}: \mathrm{E}_{\mu} a=0, \mathrm{E}_{\mu} a^{2}<\infty\right\}
$$

- Global Chart: $\phi: M \rightarrow H$

$$
\phi(P):=p-1+\log p-\mathrm{E}_{\mu} \log p
$$

- Proposition 1: ϕ is a bijection onto H

M as a Generalised Exponential Family

- The exponential function is replaced by the inverse of the function $(0, \infty)$ э $y \rightarrow y-1+\log y \in \mathrm{R}$:

$$
p(x)=\psi(a(x)+Z(a)) \quad \text { where } \quad a=\phi(P)
$$

M as a Generalised Exponential Family

- The exponential function is replaced by the inverse of the function $(0, \infty)$ э $y \rightarrow y-1+\log y \in \mathrm{R}$:

$$
p(x)=\psi(a(x)+Z(a)) \quad \text { where } \quad a=\phi(P)
$$

- Convex, linear growth, bounded derivatives of all orders.

Mixture and Exponential Maps

- The maps $m, e: M \rightarrow H$, defined by

$$
m(P)=p-1 \quad \text { and } \quad e(P)=\log p-\mathrm{E}_{\mu} \log p
$$

are injective, but not homeomorphic (like η_{μ} of $\varepsilon(\mu)$)

Mixture and Exponential Maps

- The maps $m, e: M \rightarrow H$, defined by

$$
m(P)=p-1 \quad \text { and } \quad e(P)=\log p-\mathrm{E}_{\mu} \log p
$$

are injective, but not homeomorphic (like η_{μ} of $\varepsilon(\mu)$)

- They satisfy:

$$
\mathscr{D}(P \mid Q)+\mathscr{D}(Q \mid P)=\langle m(P)-m(Q), e(P)-e(Q)\rangle_{H}
$$

- So that

$$
\begin{aligned}
& \quad\|m(P)-m(Q)\|_{H}^{2}+\|e(P)-e(Q)\|_{H}^{2} \leq\|\phi(P)-\phi(Q)\|_{H}^{2} \\
& \text { and } \quad \mathscr{D}(P \mid Q)+\mathscr{D}(Q \mid P) \leq \frac{1}{2}\|\phi(P)-\phi(Q)\|_{H}^{2}
\end{aligned}
$$

The Tangent Bundle

- Global Chart: $\Phi: T M \rightarrow H \times H$

$$
\Phi(P, U):=\left(\phi(P), U \phi_{P}\right)
$$

The Tangent Bundle

- Global Chart: $\Phi: T M \rightarrow H \times H$

$$
\Phi(P, U):=\left(\phi(P), U \phi_{P}\right)
$$

- m and e representations:

$$
\Phi_{m}(P, U):=\left(\phi(P), U m_{P}\right) \in H \times H, \quad \Phi_{e}(P, U):=\left(\phi(P), U e_{P}\right) \in H \times H
$$

Injective but not homeomorphic

The Tangent Bundle

- Global Chart: $\Phi: T M \rightarrow H \times H$

$$
\Phi(P, U):=\left(\phi(P), U \phi_{P}\right)
$$

- m and e representations:

$$
\Phi_{m}(P, U):=\left(\phi(P), U m_{P}\right) \in H \times H, \quad \Phi_{e}(P, U):=\left(\phi(P), U e_{P}\right) \in H \times H
$$

Injective but not homeomorphic

- The Fisher metric: for $U, V \in T_{P} M$

$$
\begin{equation*}
\langle U, V\rangle_{P}:=-U V \mathscr{D}_{P}=\left\langle U m_{P}, V e_{P}\right\rangle_{H} \tag{Eguchi}
\end{equation*}
$$

The Tangent Bundle

- Global Chart: $\Phi: T M \rightarrow H \times H$

$$
\Phi(P, U):=\left(\phi(P), U \phi_{P}\right)
$$

- m and e representations:

$$
\Phi_{m}(P, U):=\left(\phi(P), U m_{P}\right) \in H \times H, \quad \Phi_{e}(P, U):=\left(\phi(P), U e_{P}\right) \in H \times H
$$

Injective but not homeomorphic

- The Fisher metric: for $U, V \in T_{P} M$

$$
\begin{equation*}
\langle U, V\rangle_{P}:=-U V \mathcal{D}_{P}=\left\langle U m_{P}, V e_{P}\right\rangle_{H} \tag{Eguchi}
\end{equation*}
$$

- $\left(T_{P} M,<\cdot, \cdot>\right)$ is an inner product space with

$$
\|U\|_{P}=\left\langle U m_{P}, U e_{P}\right\rangle_{H} \leq\|U \phi\|_{H}
$$

e and m Parallel Transport

- These are obtained by considering the inclusions:

$$
\Phi_{m}(T M) \subset H \times H \quad \text { and } \quad \Phi_{e}(T M) \subset H \times H
$$

together with the parallel transport on $H \times H$ defined by:

$$
T_{a, b}(a, u)=(b, u)
$$

e and m Parallel Transport

- These are obtained by considering the inclusions:

$$
\Phi_{m}(T M) \subset H \times H \quad \text { and } \quad \Phi_{e}(T M) \subset H \times H
$$

together with the parallel transport on $H \times H$ defined by:

$$
T_{a, b}(a, u)=(b, u)
$$

- Like the m parallel transport on the maximal exponential model, they coincide with m parallel transport on the tangent bundle only in special cases.
- α-parallel transports can be defined in the same way on statistical Hilbert bundles.

Submanifolds

Like the maximal exponential model, M admits many useful submanifolds. For example...

- Proposition 2: If $N \subset M$ is a finite-dimensional exponential family, then it is a C^{∞}-embedded submanifold of M, on which m, e and \mathscr{D} are of class C^{∞}

Submanifolds

Like the maximal exponential model, M admits many useful submanifolds. For example...

- Proposition 2: If $N \subset M$ is a finite-dimensional exponential family, then it is a C^{∞}-embedded submanifold of M, on which m, e and \mathscr{D} are of class C^{∞}
- Example: the non-singular Gaussian measures on R^{m} form a C^{∞}-embedded submanifold of $M\left(\mathrm{R}^{m}, \mu\right)$, where

$$
\mu(d x):=2^{-m} \exp (-|x|) d x
$$

Submanifolds

Like the maximal exponential model, M admits many useful submanifolds. For example...

- Proposition 2: If $N \subset M$ is a finite-dimensional exponential family, then it is a C^{∞}-embedded submanifold of M, on which m, e and \mathcal{D} are of class C^{∞}
- Example: the non-singular Gaussian measures on R^{m} form a C^{∞}-embedded submanifold of $M\left(\mathrm{R}^{m}, \mu\right)$, where

$$
\mu(d x):=2^{-m} \exp (-|x|) d x
$$

- Similar results hold for mixture models and α-models
- Subspaces of H also provide natural submanifolds of M

Banach Variants

- The α-divergences are twice differentiable on M.
- Greater regularity can be obtained by the use of stronger topologies on the model space: $L^{\lambda}(\mu)$, for $\lambda>2$
- This enables the definition of α-covariant derivatives on the statistical bundles mentioned above.
- Details in:
N.J. Newton, Infinite-dimensional statistical manifolds based on a balanced chart, Bernoulli 22, 711-731 (2016)

Nonlinear Filtering

- Markov "signal" process: $\left(X_{t} \in \mathbf{X}, t \in[0, \infty)\right)$
- (\mathbf{X}, μ) is a metric space, with reference probability measure μ
- Eg. $\mathbf{X}=\mathbf{R}^{d}, \mu=N(0, I)$
- Partial "observation" process: $\left(Y_{t} \in \mathrm{R}, t \in[0, \infty)\right)$

$$
Y_{t}=\int_{0}^{t} h\left(X_{s}\right) d s+W_{t}
$$

- Estimate X_{t} at each time t from its prior distribution P_{t} and the history of the observation:

$$
Y_{0}^{t}:=\left(Y_{s}, s \in[0, t]\right)
$$

- Typical equation for the density:

$$
d \pi_{t}=\mathcal{A} \pi_{t} d t+\pi_{t}\left(h-\bar{h}_{t}\right) d \bar{W}_{t} \quad \text { where } d \bar{W}_{t}:=d Y_{t}-\bar{h}_{t} d t
$$

M-Valued Nonlinear Filters

Proposition 3: Under some technical conditions:

1. $\mathbf{P}\left(\Pi_{t} \in M\right.$ for all $\left.t \geq 0\right)=1$

M-Valued Nonlinear Filters

Proposition 3: Under some technical conditions:

1. $\mathbf{P}\left(\Pi_{t} \in M\right.$ for all $\left.t \geq 0\right)=1$
2. The coordinate representation $\phi(\Pi)$ satisfies the following (infinite-dimensional) Itô equation

$$
d \phi\left(\Pi_{t}\right)=\left(u_{t}-\zeta_{t}\right) d t+v_{t} d \bar{W}_{t}
$$

where

$$
\begin{aligned}
& u_{t}:=\Lambda\left(1+\pi_{t}^{-1}\right) \mathcal{A} \pi_{t} \\
& \zeta_{t}:=\Lambda\left(h-\bar{h}_{t}\right)^{2} / 2 \\
& v_{t}:=\Lambda\left(\pi_{t}+1\right)\left(h-\bar{h}_{t}\right)
\end{aligned} \quad \Lambda f= \begin{cases}f-E_{\mu} f & \text { if } f \in L^{2}(\mathbf{X}, \mu) \\
0 & \text { otherwise }\end{cases}
$$

Components

- Since H is of countable dimension, it admits a complete orthonormal basis ($\eta_{i}, i=1,2,3, \ldots$)
- So the filter equations can be written in terms of the components:

$$
\phi\left(\Pi_{t}\right)^{i}:=\left\langle\phi\left(\Pi_{t}\right), \eta_{i}\right\rangle_{H} \quad \text { for } \quad i=1,2,3, \ldots
$$

Components

- Since H is of countable dimension, it admits a complete orthonormal basis ($\eta_{i}, i=1,2,3, \ldots$)
- So the filter equations can be written in terms of the components:

$$
\phi\left(\Pi_{t}\right)^{i}:=\left\langle\phi\left(\Pi_{\mathrm{t}}\right), \eta_{i}\right\rangle_{H} \quad \text { for } \quad i=1,2,3, \ldots
$$

- The Fisher metric can be expressed in terms of the (η_{i})

$$
\langle U, V\rangle_{P}=G(P)_{i, j} u^{i} v^{j}
$$

where $G(P)_{i, j}=\left\langle D_{i}, D_{j}\right\rangle_{P},\left(P, D_{i}\right)=\Phi^{-1}\left(\phi(P), \eta_{i}\right)$ and $U=u^{i} D_{i}$

Components

- Since H is of countable dimension, it admits a complete orthonormal basis ($\eta_{i}, i=1,2,3, \ldots$)
- So the filter equations can be written in terms of the components:

$$
\phi\left(\Pi_{t}\right)^{i}:=\left\langle\phi\left(\Pi_{t}\right), \eta_{i}\right\rangle_{H} \quad \text { for } \quad i=1,2,3, \ldots
$$

- The Fisher metric can be expressed in terms of the (η_{i})

$$
\langle U, V\rangle_{P}=G(P)_{i, j} u^{i} v^{j}
$$

where $G(P)_{i, j}=\left\langle D_{i}, D_{j}\right\rangle_{P},\left(P, D_{i}\right)=\Phi^{-1}\left(\phi(P), \eta_{i}\right)$ and $U=u^{i} D_{i}$

- The basis can be chosen to suit the problem (wavelets)
- Truncated series could be used in approximations

Quadratic Variation

- Semimartingales on M have well-defined quadratic variation in the Fisher metric; in particular

$$
[\Pi]_{t}:=\int_{0}^{t} G\left(\Pi_{s}\right)_{i, j} d\left[\phi(\Pi)^{i}, \phi(\Pi)^{i}\right]_{s}
$$

Quadratic Variation

- Semimartingales on M have well-defined quadratic variation in the Fisher metric; in particular

$$
[\Pi]_{t}:=\int_{0}^{t} G\left(\Pi_{s}\right)_{i, j}\left[\phi(\Pi)^{i}, \phi(\Pi)^{i}\right]_{s}
$$

- Proposition 4: Under the conditions of Proposition 3:

$$
I\left(X ; Y_{s}^{t} \mid Y_{0}^{s}\right)=\frac{1}{2} \mathbf{E}\left([\Pi]_{t}-[\Pi]_{s} \mid Y_{0}^{s}\right)
$$

Quadratic Variation

- Semimartingales on M have well-defined quadratic variation in the Fisher metric; in particular

$$
[\Pi]_{t}:=\int_{0}^{t} G\left(\Pi_{s}\right)_{i, j} d\left[\phi(\Pi)^{i}, \phi(\Pi)^{i}\right]_{s}
$$

- Proposition 4: Under the conditions of Proposition 3:

$$
I\left(X ; Y_{s}^{t} \mid Y_{0}^{s}\right)=\frac{1}{2} \mathbf{E}\left([\Pi]_{t}-[\Pi]_{s} \mid Y_{0}^{s}\right)
$$

- Results of this type are of interest in Non-equilibrium Statistical Mechanics, where interactions between systems set up "flows of entropy".

Finite Dimensional Filters

- A number of filters are known to evolve on finitedimensional exponential manifolds (Kalman-Bucy, Benes...)

Finite Dimensional Filters

- A number of filters are known to evolve on finitedimensional exponential manifolds (Kalman-Bucy, Benes...)
- Proposition 5: Under some technical conditions, Π is the unique strong solution of the following intrinsic Stratonovich equation on such a manifold:

$$
\circ d \Pi_{t}=\left(U_{t}\left(\Pi_{t}\right)-\frac{1}{2} \nabla_{V_{t}}^{(-1)} V_{t}\left(\Pi_{t}\right)\right) d t+V_{t}\left(\Pi_{t}\right) \circ d \bar{W}_{t}
$$

where $\nabla^{(-1)}$ is Amari's (-1)-covariant derivative, and U and V are suitably regular, time-dependent vector fields.

Projections onto Submanifolds

(Brigo, Pistone, Hanzon, Le Gland, Armstrong...)

1. Choose a suitable C^{2}-embedded finite-dimensional submanifold $N \subset M$.
2. The tangent space $T_{P} N$ is complete w.r.t. the Fisher metric.
3. Evaluate $u_{t}-z_{t}$ and v_{t} at points of N. (These are tangent vectors of M.)
4. Project onto $T_{P} N$ in the Fisher metric to obtain an evolution equation on N.

Projections onto Submanifolds

(Brigo, Pistone, Hanzon, Le Gland, Armstrong...)

1. Choose a suitable C^{2}-embedded finite-dimensional submanifold $N \subset M$.
2. The tangent space $T_{P} N$ is complete w.r.t. the Fisher metric.
3. Evaluate $u_{t}-z_{t}$ and v_{t} at points of N. (These are tangent vectors of M.)
4. Project onto $T_{P} N$ in the Fisher metric to obtain an evolution equation on N.

- The Hilbert manifold is very suited to this purpose
- One could also project in the model space metric

Details in:

1. N.J. Newton, An infinite-dimensional statistical manifold modelled on Hilbert space, J. Functional Anal. 263, 1661-1681 (2012).
2. N.J. Newton, Information Geometric Nonlinear Filtering, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18, 1550014 (2015).
3. N.J. Newton, Infinite-dimensional statistical manifolds based on a balanced chart, Bernoulli 22, 711-731 (2016)

Related Work

4. J. Armstrong and D. Brigo, Stochastic filtering via L2 projection on mixture manifolds with computer algorithms and numerical examples, arXiv:1303.6236 (2013)
5. D. Brigo, B. Hanzon and F. Le Gland, Approximate nonlinear filtering on exponential manifolds of densities, Bernoulli 5, 495-534 (1999).
6. D. Brigo and G. Pistone, Projection-based dimensionality reduction for measurevalued evolution equations in statistical manifolds, arXiv:1601.04189 (2016)
7. A. Cena and G. Pistone, Exponential statistical manifold, Ann. Inst. Statist. Math. 59, 27-56 (2007)

Related Work (cont.)

8. P. Gibilisco and G. Pistone, Connections on non-parametric statistical manifolds by Orlicz space geometry, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 1, 325-347 (1998)
9. M.R. Grasselli, Dual connections in non-parametric classical information geometry, Ann. Inst. Statist. Math. 62, 873-896 (2010)
10. G. Pistone and M.P. Rogantin, The exponential statistical manifold: mean parameters, orthogonality and space transformations, Bernoulli 5, 721-760 (1999).
11. G. Pistone and C. Sempi, An infinite-dimensional geometric structure on the space of all probability measures equivalent to a given one, Ann. Statist. 23, 1543-1561 (1995).
