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Overview 

• Nonlinear Filtering (recursive Bayesian estimation) 

– The need for a proper state space for posterior distributions 

• The infinite-dimensional Hilbert manifold of probability 

measures, M, (and Banach variants) 

• An M-valued Itô stochastic differential equation for the 

nonlinear filter 

• Information geometric properties of the nonlinear filter 
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Nonlinear Filtering 

• Markov “signal” process: 

–           is a metric space, with reference probability measure m 

– Eg.  

• Partial “observation” process: 
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Nonlinear Filtering 

• Markov “signal” process: 

–           is a metric space, with reference probability measure m 

– Eg.  

• Partial “observation” process: 

 

 

• Estimate Xt at each time t from its prior distribution Pt and 

the history of the observation: 

 

• The linear-Gaussian case yields the Kalman-Bucy filter 
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• Regular conditional (posterior) distribution: 

 

•      is a random probability measure evolving on          .  

How should we represent it? 
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• Regular conditional (posterior) distribution: 

 

•      is a random probability measure evolving on          .  

How should we represent it? 

• We could consider the conditional density (w.r.t m), pt 

– typical differential equation (Shiriyayev, Wonham, Stratonovich, 

Kushner): 

• Spaces of densities are not necessarily optimal 
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Mean-Square Errors 

• Suppose                      for some                  

• Then                  minimises the mean-square error 
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• Suppose                      for some                  

• Then                  minimises the mean-square error 

 

 

• If                  for some                       , and                   then 

 

 and so the L2(m) norm on densities may be useful 
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• Suppose                      for some                  

• Then                  minimises the mean-square error 

 

 

• If                  for some                       , and                   then 

 

 and so the L2(m) norm on densities may be useful 

• Not if  f = 1B and t(B) is very small (Eg. fault detection) 
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• Suppose                      for some                  

• Then                  minimises the mean-square error 

 

 

• If                  for some                       , and                   then 

 

 and so the L2(m) norm on densities may be useful 

• Not if  f = 1B and t(B) is very small (Eg. fault detection) 

• When topologised in this way, P (X) has a boundary 
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Multi-Objective Mean-Square Errors 

• Maximising the L2 error over square-integrable functions 
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Multi-Objective Mean-Square Errors 

• Maximising the L2 error over square-integrable functions 

 

 

 

 

 

 where                                                     

• In time-recursive approximations, the accuracy of       is 

affected by that of       (s < t).  This naturally induces 

multi-objective criteria at time s (nonlinear dynamics). 
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Geometric Sensitivity 

• M is “geometrically sensitive”.  (It requires small probabilities to 

be approximated with greater absolute accuracy than large probabilities) 

• When topologised by M, P (X) does not have a boundary 
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Geometric Sensitivity 

• M is “geometrically sensitive”.  (It requires small probabilities to 

be approximated with greater absolute accuracy than large probabilities) 

• When topologised by M, P (X) does not have a boundary 

• This is highly desirable in the context of recursive 

Bayesian estimation, where conditional probabilities are 

repeatedly multiplied by the likelihood functions of new 

observations. 
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Geometric Sensitivity 

• M is “geometrically sensitive”.  (It requires small probabilities to 

be approximated with greater absolute accuracy than large probabilities.) 

• When topologised by M, P (X) does not have a boundary. 

• This is highly desirable in the context of recursive 

Bayesian estimation, where conditional probabilities are 

repeatedly multiplied by the likelihood functions of new 

observations. 

• M is Pearson’s c 2 divergence.  It belongs to the one-

parameter family of a-divergences: 
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Geometric Sensitivity 

• M is “geometrically sensitive”.  (It requires small probabilities to 

be approximated with greater absolute accuracy than large probabilities.) 

• When topologised by M, P (X) does not have a boundary. 

• This is highly desirable in the context of recursive 

Bayesian estimation, where conditional probabilities are 

repeatedly multiplied by the likelihood functions of new 

observations. 

• M is Pearson’s c 2 divergence.  It belongs to the one-

parameter family of a-divergences: 

• It is too restrictive to use in practice 
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• As |a | becomes larger       becomes increasingly 

“geometrically sensitive” 

• The case a = 0  yields the Hellinger metric 

a-Divergences 

aD
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• As |a | becomes larger       becomes increasingly 

“geometrically sensitive” 

• The case a = 0  yields the Hellinger metric 

• The case a = ±1  yields the KL-Divergence: 
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• As |a | becomes larger       becomes increasingly 

“geometrically sensitive” 

• The case a = 0  yields the Hellinger metric 

• The case a = ±1  yields the KL-Divergence: 

 

 

• This is widely used in practice. 

• Symmetric error criteria may be appropriate, such as 
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Connections with Information Theory 

• Conditional mutual information (un-averaged): 

 

• Additivity property: 
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Connections with Information Theory 

• Conditional mutual information (unaveraged): 

 

• Additivity property: 

 

• Information Supply to the nonlinear filter: 

 

• The filter continuously fuses new observation information 
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Appropriate Metrics on P (X)  

• The KL divergence is bilinear in the density and its log 
(regarded as elements of dual spaces of functions). 

• For                      with P, Q << m 

  

 where p and q are the densities  
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Appropriate Metrics on P (X)  

• The KL divergence is bilinear in the density and its log 
(regarded as elements of dual spaces of functions). 

• For                      with P, Q << m 

  

 where p and q are the densities 

• So we would like the metric to “control” both p and log p  
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Maximal Exponential Model 
(G. Pistone et al.) 

•   

• Model space (exponential Orlicz): 
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Maximal Exponential Model 
(G. Pistone et al.) 

•   

• Model space (exponential Orlicz): 

 

 

• Global Chart: sm: E(m)  Bm 
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Maximal Exponential Model 
(G. Pistone et al.) 

•   

• Model space (exponential Orlicz): 

 

 

• Global Chart: sm: E(m)  Bm 

 

 

• Mixture Map: hm: E(m)  *Bm 

 

 

    Injective and of class C, but not homeomorphic 
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The Hilbert Manifold M 
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• M  is the subset of P (X) whose members have the 

following properties: 
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The Hilbert Manifold M 
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• M  is the subset of P (X) whose members have the 

following properties: 

 

• Model space: 

 

• Global Chart: f : M  H 
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The Hilbert Manifold M 

NJN U of E 2016 

• M  is the subset of P (X) whose members have the 

following properties: 

 

• Model space: 

 

• Global Chart: f : M  H 

 

• Proposition 1: f is a bijection onto H 
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M as a Generalised Exponential Family 

• The exponential function is replaced by the inverse of 

the function (0, ) ' y   y  1 + log y  R: 
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M as a Generalised Exponential Family 

• The exponential function is replaced by the inverse of 

the function (0, ) ' y   y  1 + log y  R: 

 

 

 

 

 

 

 

• Convex, linear growth, bounded derivatives of all orders. 
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Mixture and Exponential Maps 

• The maps                   , defined by 

 

 are injective, but not homeomorphic (like hm of E(m)) 
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Mixture and Exponential Maps 

• The maps                   , defined by 

 

 are injective, but not homeomorphic (like hm of E(m)) 

• They satisfy: 

 

• So that 

 

 and 

NJN U of E 2016 

ppPepPm logElog)(1)( m and

222
)()()()()()(

HHH
QPQePeQmPm ff 

HMem :,

H
QePeQmPmPQQP )()(,)()()|()|( DD

2
)()(

2

1
)|()|(

H
QPPQQP ff  DD

13 



NJN U of E 2016 

The Tangent Bundle 

• Global Chart:  F : TM  HH 
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The Tangent Bundle 

• Global Chart:  F : TM  HH 

 

• m and e representations: 

 

    Injective but not homeomorphic 
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The Tangent Bundle 

• Global Chart:  F : TM  HH 

 

• m and e representations: 

 

    Injective but not homeomorphic 

• The Fisher metric: 
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The Tangent Bundle 

• Global Chart:  F : TM  HH 

 

• m and e representations: 

 

    Injective but not homeomorphic 

• The Fisher metric: 

 

• (TPM, < · , · >) is an inner product space with           
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e and m Parallel Transport 

• These are obtained by considering the inclusions: 

 

    together with the parallel transport on HH defined by: 
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e and m Parallel Transport 

• These are obtained by considering the inclusions: 

 

    together with the parallel transport on HH defined by: 

 

• Like the m parallel transport on the maximal exponential 

model, they coincide with m parallel transport on the 

tangent bundle only in special cases. 

•  a-parallel transports can be defined in the same way on 

statistical Hilbert bundles. 
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Submanifolds 

Like the maximal exponential model, M  admits many 

useful submanifolds.  For example… 

• Proposition 2:  If N  M  is a finite-dimensional 

exponential family, then it is a C-embedded submanifold 
of M, on which m, e and D are of class C 
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Submanifolds 

Like the maximal exponential model, M  admits many 

useful submanifolds.  For example… 

• Proposition 2:  If N  M  is a finite-dimensional 

exponential family, then it is a C-embedded submanifold 
of M, on which m, e and D are of class C 

• Example: the non-singular Gaussian measures on Rm 

form a C-embedded submanifold of M(Rm, m), where 
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Submanifolds 

Like the maximal exponential model, M  admits many 

useful submanifolds.  For example… 

• Proposition 2:  If N  M  is a finite-dimensional 

exponential family, then it is a C-embedded submanifold 
of M, on which m, e and D are of class C 

• Example: the non-singular Gaussian measures on Rm 

form a C-embedded submanifold of M(Rm, m), where 

 

• Similar results hold for mixture models and a-models 

• Subspaces of H also provide natural submanifolds of M 
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Banach Variants 

• The a-divergences are twice differentiable on M. 

• Greater regularity can be obtained by the use of stronger 

topologies on the model space: Ll(m), for l  2 

• This enables the definition of a-covariant derivatives on 

the statistical bundles mentioned above. 

• Details in: 

 N.J. Newton, Infinite-dimensional statistical manifolds based on a balanced 

chart, Bernoulli 22, 711-731 (2016) 
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Nonlinear Filtering 

• Markov “signal” process: 

–           is a metric space, with reference probability measure m 

– Eg.  

• Partial “observation” process: 

 

• Estimate Xt at each time t from its prior distribution Pt and 

the history of the observation: 

 

• Typical equation for the density: 
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Proposition 3: Under some technical conditions: 

1.    
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Proposition 3: Under some technical conditions: 

1.    

2. The coordinate representation f() satisfies the 

following (infinite-dimensional) Itô equation 

 

     where 
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• Since H is of countable dimension, it admits a complete 

orthonormal basis (hi, i = 1, 2, 3, …) 

• So the filter equations can be written in terms of the 

components: 
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• Since H is of countable dimension, it admits a complete 

orthonormal basis (hi, i = 1, 2, 3, …) 

• So the filter equations can be written in terms of the 

components: 

 

• The Fisher metric can be expressed in terms of the (hi) 
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• Since H is of countable dimension, it admits a complete 

orthonormal basis (hi, i = 1, 2, 3, …) 

• So the filter equations can be written in terms of the 

components: 

 

• The Fisher metric can be expressed in terms of the (hi) 

 

    where                         ,                                and   

• The basis can be chosen to suit the problem (wavelets) 

• Truncated series could be used in approximations 
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Quadratic Variation 

• Semimartingales on M  have well-defined quadratic 

variation in the Fisher metric; in particular 
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Quadratic Variation 

• Semimartingales on M  have well-defined quadratic 

variation in the Fisher metric; in particular 

 

• Proposition 4:  Under the conditions of Proposition 3: 
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Quadratic Variation 

• Semimartingales on M  have well-defined quadratic 

variation in the Fisher metric; in particular 

 

• Proposition 4:  Under the conditions of Proposition 3: 

 

 

• Results of this type are of interest in Non-equilibrium 

Statistical Mechanics, where interactions between 

systems set up “flows of entropy”. 
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Finite Dimensional Filters 

• A number of filters are known to evolve on finite-

dimensional exponential manifolds (Kalman-Bucy, 

Benes…) 
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Finite Dimensional Filters 

• A number of filters are known to evolve on finite-

dimensional exponential manifolds (Kalman-Bucy, 

Benes…) 

• Proposition 5: Under some technical conditions,  is the 

unique strong solution of the following intrinsic 

Stratonovich equation on such a manifold: 

 

 

    where         is Amari’s (1)-covariant derivative, and U  

    and V are suitably regular, time-dependent vector fields. 

tttttVttt WdVdtVUd
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Projections onto Submanifolds 
(Brigo, Pistone, Hanzon, Le Gland, Armstrong…) 

1. Choose a suitable C2-embedded finite-dimensional 

submanifold N  M. 

2. The tangent space TPN is complete w.r.t. the Fisher 

metric. 

3. Evaluate ut  zt and vt at points of N.  (These are tangent 

vectors of M.) 

4. Project onto TPN in the Fisher metric to obtain an 

evolution equation on N. 
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Projections onto Submanifolds 
(Brigo, Pistone, Hanzon, Le Gland, Armstrong…) 

1. Choose a suitable C2-embedded finite-dimensional 

submanifold N  M. 

2. The tangent space TPN is complete w.r.t. the Fisher 

metric. 

3. Evaluate ut  zt and vt at points of N.  (These are tangent 

vectors of M.) 

4. Project onto TPN in the Fisher metric to obtain an 

evolution equation on N. 

• The Hilbert manifold is very suited to this purpose 

• One could also project in the model space metric 
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