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Overview

* Nonlinear Filtering (recursive Bayesian estimation)

— The need for a proper state space for posterior distributions

« The infinite-dimensional Hilbert manifold of probability
measures, M, (and Banach variants)

« An M-valued It0 stochastic differential equation for the
nonlinear filter

 Information geometric properties of the nonlinear filter
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Nonlinear Filtering

« Markov “signal” process: (X, € X, t €[0,x))
— (X, 1) is a metric space, with reference probability measure u
- Eg. X=RY, u=N(0,1)

+ Partial “observation” process: (Y, € R, t €[0,))

Y, = ["h(X,)ds +W,

N Brownian Motion, independent of X
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Nonlinear Filtering

« Markov “signal” process: (Xt e X, te[0, O0))
— (X, 1) is a metric space, with reference probability measure u
- Eg. X=RY, u=N(0,1)

+ Partial “observation” process: (Y, € R, t €[0,))

Y, = ["h(X,)ds +W,

N Brownian Motion, independent of X

« Estimate X, at each time t from its prior distribution P, and
the history of the observation:

Y= (Y., se[0,t])

« The linear-Gaussian case yields the Kalman-Bucy filter
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Nonlinear Filtering

« Regular conditional (posterior) distribution:IT, : Q — ®(X)

I1,(B) = P(X, e B|Y})

- [II, is a random probability measure evolving on 2(X) .
How should we represent it?
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Nonlinear Filtering

Regular conditional (posterior) distribution:IT, : QQ — ®(X)

I1,(B) = P(X, e B|Y})

[1, is a random probability measure evolving on ?(X) .
How should we represent it?

We could consider the conditional density (w.r.t u), =

— typical differential equation (Shiriyayev, Wonham, Stratonovich,
Kushner):

"drz, = Axdt+ 7, (h—h)(dY, —hdt)" (A = [ heorT, (a0))

Spaces of densities are not necessarily optimal
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Mean-Sqguare Errors

« Suppose Ef(X,)* <o forsome f:X—>R

« Then f, = E, f minimises the mean-square error

E(f (X)) =E(Ep, (f = )+ (. - )?)

estimationerror + approximation error
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Mean-Sqguare Errors

« Suppose Ef(X,)* <o forsome f:X—>R
« Then f, = E, f minimises the mean-square error
E(F(X)- )2 =E(E,, (f - f)2+(F - £)?)

estimationerror + approximation error

- If f=E, f forsome I1,:Q—(x), and I, I, <<x then
(ft o fAt)2 < Ey f 2Eu(ﬂ't _7%t)2
and so the L?(x) norm on densities may be useful
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Mean-Square Errors

« Suppose Ef(X,)* <o forsome f:X—>R
« Then f, = E, f minimises the mean-square error
E(F(X)- )2 =E(E,, (f - f)2+(F - £)?)

estimationerror + approximation error

- If f=E, f forsome I1,:Q—(x), and I, I, <<x then
(ft o fAt)2 < Ey f 2Eu(ﬂ't _7%t)2
and so the L?(x) norm on densities may be useful

* Notif f=1; and IT(B) is very small (g. fault detection)
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Mean-Square Errors

« Suppose Ef(X,)* <o forsome f:X—>R
« Then f, = E, f minimises the mean-square error
E(F(X)- )2 =E(E,, (f - f)2+(F - £)?)

estimationerror + approximation error

- If f=E, f forsome I1,:Q—(x), and I, I, <<x then
(ft o fAt)2 < Ey f 2Eu(ﬂ't _7%t)2
and so the L?(x) norm on densities may be useful

* Notif f=1; and IT(B) is very small (g. fault detection)
* When topologised in this way, ®(X) has a boundary
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Multi-Objective Mean-Square Errors

« Maximising the L? error over square-integrable functions

-,
( ft — ft) (approximation errorj

(I1,) EHt (f . ]Et)z estimation error

M(ﬁt [ 11,) = sup, -

= sup, (Ey, f(—drT,/drT,)f
=E, (1-dIl, /dIl,)?

where F:={f el(1): f, =0, E, f2=1
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Multi-Objective Mean-Square Errors

« Maximising the L? error over square-integrable functions

- f_fZ roximation error
M(Ht |Ht):=SUprL2 ( L t) [appo ation e oj

(I1,) EHt (f . ]Et)z estimation error
= sup, (Ey, f(—drT, /drT,)f
=E, (1-dIl, /dI1,)?
where F:={f el(1): f, =0, E, f2=1

* In time-recursive approximations, the accuracy of H IS
affected by that of H (s <t). This naturally induces
multi-objective crlterla at time s (nonlinear dynamics).
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Geometric Sensitivity

e Mis “geometrically sensitive”. (it requires small probabilities to
be approximated with greater absolute accuracy than large probabilities)

* When topologised by M, ®(X) does not have a boundary
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Geometric Sensitivity

e Mis “geometrically sensitive”. (it requires small probabilities to
be approximated with greater absolute accuracy than large probabilities)

* When topologised by M, ®(X) does not have a boundary

« This is highly desirable in the context of recursive
Bayesian estimation, where conditional probabilities are
repeatedly multiplied by the likelihood functions of new
observations.
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Geometric Sensitivity

e Mis “geometrically sensitive”. (it requires small probabilities to
be approximated with greater absolute accuracy than large probabilities.)

* When topologised by s, ®(X) does not have a boundary.

« This is highly desirable in the context of recursive
Bayesian estimation, where conditional probabilities are
repeatedly multiplied by the likelihood functions of new
observations.

e o is Pearson’s y 2 divergence. It belongs to the one-
parameter family of a-divergences: M =D ,
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Geometric Sensitivity

e Mis “geometrically sensitive”. (it requires small probabilities to
be approximated with greater absolute accuracy than large probabilities.)

* When topologised by s, ®(X) does not have a boundary.

« This is highly desirable in the context of recursive
Bayesian estimation, where conditional probabilities are
repeatedly multiplied by the likelihood functions of new
observations.

e o is Pearson’s y 2 divergence. It belongs to the one-
parameter family of a-divergences: M =D ,

« It is too restrictive to use in practice
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a-Divergences

* As |a| becomes larger ©_, becomes increasingly
“geometrically sensitive”

 The case a=0 yields the Hellinger metric
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a-Divergences

* As |a| becomes larger ©_, becomes increasingly
“geometrically sensitive”

 The case a=0 yields the Hellinger metric

« The case a=+1 yields the KL-Divergence:

D(P1Q) =0,(P1Q) =Eq 5L log o

« This is widely used in practice.
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a-Divergences

* As |a| becomes larger ©_, becomes increasingly
“geometrically sensitive”

 The case a=0 yields the Hellinger metric

« The case a=+1 yields the KL-Divergence:

D(P1Q) =0,(P1Q) =Eq 5L log o

« This is widely used in practice.

e Symmetric error criteria may be appropriate, such as

o(I1, | I1,) +D(IT, | IT,)

NJIN U of E 2016



Connections with Information Theory

« Conditional mutual information (un-averaged):
1(X;Y|Z):=D(Py, | Py ®P,,)

« Additivity property:
1(X:(Y,Z2)=1(X;Z)+EI(X;Y|2Z)

NJN U of E 2016



Connections with Information Theory

Conditional mutual information (unaveraged):
1(X;Y|Z):=D(Py, | Py ®P,,)

Additivity property:
1(X:(Y,Z2)=1(X;Z)+EI(X;Y|2Z)

Information Supply to the nonlinear filter:
S(t)=1(X;Y,)

The filter continuously fuses new observation information
S(t)=S(s)+EI(X;Y! YY)
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Appropriate Metrics on ®(X)

« The KL divergence is bilinear in the density and its log
(regarded as elements of dual spaces of functions).

« For P,Qe®(X) with P, Q << u
D(P|Q)=(p,log p)—(p,logq)

where p and g are the densities
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Appropriate Metrics on ®(X)

« The KL divergence is bilinear in the density and its log
(regarded as elements of dual spaces of functions).

« For P,Qe®(X) with P, Q << u
D(P|Q)=(p,log p)—(p,logq)
where p and g are the densities

« So we would like the metric to “control” both p and log p
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Maximal Exponential Model
(G. Pistone et al.)

+ E(W)={Pe@(X): p=ep(a-K,(a)|aeS,|
« Model space (exponential Orlicz):

Bﬂz{a:X—>R: E,a=0, E, cosh(ca) <o for somea>0}
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Maximal Exponential Model
(G. Pistone et al.)

+ E(W)={Pe@(X): p=ep(a-K,(a)|aeS,|
« Model space (exponential Orlicz):

Bﬂz{a:X—>R: E,a=0, E, cosh(ca) <o for somea>0}
» Global Chart: s, &) - B,

s, (P) =log(p)-E, log(p)
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Maximal Exponential Model
(G. Pistone et al.)

E(u)={Pe®(X): p=ep(a-K,(a)|aeS,|
Model space (exponential Orlicz):

Bﬂz{a:X—>R: E,a=0, E, cosh(ca) <o for somea>0}

Global Chart: s : E(x) — B,

s, (P) =log(p)-E, log(p)

Mixture Map: n,; (1) —> "B,
n,(P)=p-1
Injective and of class C*, but not homeomorphic
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The Hilbert Manifold M

M is the subset of #(X) whose members have the
following properties:

P~u, E,p°<co and E, log®p<o
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The Hilbert Manifold M

M is the subset of #(X) whose members have the
following properties:

P~u, E,p°<co and E, log®p<o

« Model space:

H=L1%(u)={a:X—>R:E,a=0, E,a’ <
* Global Chart: ¢: M — H
#(P) =p—-1l+logp—E, logp
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The Hilbert Manifold M

M is the subset of ®(X) whose members have the
following properties:

P~u, E,p°<co and E, log®p<o

Model space:

H=L1%(u)={a:X—>R:E,a=0, E,a’ <

Global Chart: ¢: M —> H
#(P) =p—-1l+logp—E, logp

Proposition 1: ¢ is a bijection onto H
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M as a Generalised Exponential Family

* The exponential function is replaced by the inverse of
the function (0, ©) 3y —> y—-1+logy € R:

p(x)=w(a(x)+Z(a)) where a=g¢(P)

NJN U of E 2016
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M as a Generalised Exponential Family

* The exponential function is replaced by the inverse of
the function (0, ©) 3y —> y—-1+logy € R:

p(x)=w(a(x)+Z(a)) where a=g¢(P)

4 2 0 p 4

 Convex, linear growth, bounded derivatives of all orders.
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Mixture and Exponential Maps

« The maps me:M — H defined by
m(P)=p-1 and e(P) =logp-E, logp

are injective, but not homeomorphic (like r, of £(1))
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Mixture and Exponential Maps

« The maps me:M — H defined by
m(P)=p-1 and e(P) =logp-E, logp
are injective, but not homeomorphic (like r, of £(1))
* They satisfy:
D(P|Q)+D(Q|P)=(m(P)-m(Q), e(P)-e(Q)),,
« So that
[m(P)-m(Q)}, +|e(P)—e@ [, <[ 4(P)-¢Q],

2

and  o(P|Q)+D(Q] P)£%H¢(P)—¢(Q) i
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The Tangent Bundle

e Global Chart;: @: TM — HxH
D(P,U) =(#(P), Ug,)
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The Tangent Bundle

Global Chart: @: TM — HxH

D(P,U) =(4(P), Ud;)
m and e representations:
@ (P,U)=(#P),Un,)eHxH, &, (P,U)=(4(P),Ue;)eHxH

Injective but not homeomorphic
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The Tangent Bundle

e Global Chart: @: TM — HxH

D(P,U) =(4(P), Ud;)
 m and e representations:
@ (P,U)=(@(P),Um,)e HxH,

@, (P,U) =(¢4(P),Ue,) e HxH

Injective but not homeomorphic

(U, V) =-UVD, =(Um,, Ve, )

NJN U of E 2016

The Fisher metric: forU,V eT,M

(Eguchi)
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The Tangent Bundle

Global Chart: @: TM — HxH

D(P,U) =(4(P), Ud;)
m and e representations:
@ (P,U)=(@(P),Um,)e HxH,

@, (P,U) =(¢4(P),Ue,) e HxH

Injective but not homeomorphic

U,V), =-UVD, =(Um,, Ve,),,

JU ], =(Um,, Ue,),, < [Ug],

NJN U of E 2016

The Fisher metric: forU,V eT,M

(Eguchi)

(TeM, < -, - >)Is an inner product space with
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e and m Parallel Transport

 These are obtained by considering the inclusions:

& (TM)cHxH and & (TM)cHxH

together with the parallel transport on HxH defined by:
Ta,b (a’ U) — (b’ U)

NJN U of E 2016
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e and m Parallel Transport

 These are obtained by considering the inclusions:
& (TM)cHxH and & (TM)cHxH
together with the parallel transport on HxH defined by:
T,p(@,u)=(b,u)

* Like the m parallel transport on the maximal exponential
model, they coincide with m parallel transport on the
tangent bundle only in special cases.

« a-parallel transports can be defined in the same way on
statistical Hilbert bundles.
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Submanifolds

Like the maximal exponential model, M admits many
useful submanifolds. For example...

 Proposition 2: If Nc M is a finite-dimensional

exponential family, then it is a C*-embedded submanifold
of M, on which m, e and ® are of class C~
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Submanifolds

Like the maximal exponential model, M admits many
useful submanifolds. For example...

 Proposition 2: If Nc M is a finite-dimensional
exponential family, then it is a C*-embedded submanifold
of M, on which m, e and © are of class C*

« Example: the non-singular Gaussian measures on R™
form a C*-embedded submanifold of M(R™, 1), where

p(dx) :=27" exp(—| x[) dx
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Submanifolds

Like the maximal exponential model, M admits many
useful submanifolds. For example...

 Proposition 2: If Nc M is a finite-dimensional
exponential family, then it is a C*-embedded submanifold
of M, on which m, e and © are of class C*

« Example: the non-singular Gaussian measures on R™
form a C*-embedded submanifold of M(R™, 1), where

p(dx) :=27" exp(—| x[) dx

 Similar results hold for mixture models and a-models

« Subspaces of H also provide natural submanifolds of M
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Banach Variants

 The a-divergences are twice differentiable on M.

« Greater regularity can be obtained by the use of stronger
topologies on the model space: L*(w), for A > 2

 This enables the definition of a-covariant derivatives on
the statistical bundles mentioned above.

 Detalls In:

N.J. Newton, Infinite-dimensional statistical manifolds based on a balanced
chart, Bernoulli 22, 711-731 (2016)
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Nonlinear Filtering

Markov “signal” process: (X, € X, t [0, x))
— (X, ) is a metric space, with reference probability measure u
- Eg. X=RY, u=N(0,1)
Partial “observation” process: (Y, €R, t [0,))
Y, = [ h(X,)ds +W,

Estimate X, at each time t from its prior distribution P, and
the history of the observation:

Yot = (Y, s€[0,t])
Typical equation for the density:

dz, = Az, dt+z,(h—h)dW, where dW, := dY, —h dt
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M-Valued Nonlinear Filters

Proposition 3: Under some technical conditions:

1. P(I1,eM forallt>0)=1

NJN U of E 2016
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M-Valued Nonlinear Filters

Proposition 3: Under some technical conditions:

1. P(I1,eM forallt>0)=1

2. The coordinate representation ¢#(I1) satisfies the
following (infinite-dimensional) Ito equation

dg(IT,) = (u, — &) dt +v,dW,
where

u =Al+7z7")Ar,

&= A(h=h)? /2 Af={

v, = A(z, +1)(h=h)

f-g, f if f el®(X, 1)
0 otherwise
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Components

« Since H is of countable dimension, it admits a complete
orthonormal basis (7, 1=1, 2, 3, ...)

« So the filter equations can be written in terms of the
components:

o(I1) =(p(11,),7;),, for i=1,23 ...
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Components

« Since H is of countable dimension, it admits a complete
orthonormal basis (7, 1=1, 2, 3, ...)

« So the filter equations can be written in terms of the
components:

o(I1) =(p(11,),7;),, for i=1,23 ...
* The Fisher metric can be expressed in terms of the (7,
U,V), =G(P), ;u'v’
where G(P),; =(D,,D;)_, (P.D)=27(4(P),7) and U =u'D,
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Components

« Since H is of countable dimension, it admits a complete
orthonormal basis (7, 1=1, 2, 3, ...)

« So the filter equations can be written in terms of the
components:

o(I1) =(p(11,),7;),, for i=1,23 ...
* The Fisher metric can be expressed in terms of the (7,
U,V), =G(P), ;u'v’
where G(P),; =(D,,D;)_, (P.D)=27(4(P),7) and U =u'D,
* The basis can be chosen to suit the problem (wavelets)
« Truncated series could be used in approximations
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Quadratic Variation

« Semimartingales on M have well-defined quadratic
variation in the Fisher metric; in particular

1], = [ &), dlpny, o',
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Quadratic Variation

« Semimartingales on M have well-defined quadratic
variation in the Fisher metric; in particular

1], = [ &), dlpny, o',

* Proposition 4: Under the conditions of Proposition 3:

106, 1Y5) = (), -1, 1Y)
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Quadratic Variation

« Semimartingales on M have well-defined quadratic
variation in the Fisher metric; in particular

1], = [ &), dlpny, o',

* Proposition 4: Under the conditions of Proposition 3:

S 1 S
106G 1Y) = ([, ~[ 1 v5)
* Results of this type are of interest in Non-equilibrium

Statistical Mechanics, where interactions between
systems set up “flows of entropy”.

NJN U of E 2016
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Finite Dimensional Filters

« A number of filters are known to evolve on finite-
dimensional exponential manifolds (Kalman-Bucy,
Benes...)

NJN U of E 2016
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Finite Dimensional Filters

« A number of filters are known to evolve on finite-
dimensional exponential manifolds (Kalman-Bucy,
Benes...)

* Proposition 5: Under some technical conditions, IT is the
unique strong solution of the following intrinsic
Stratonovich equation on such a manifold:

1 . —
© dHt = (Ut (Ht) o EV\(/t 1)\/t (Ht)j dt +Vt (Ht) © th

where V™ is Amari’s (-1)-covariant derivative, and U
and V are suitably regular, time-dependent vector fields.
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Projections onto Submanifolds

(Brigo, Pistone, Hanzon, Le Gland, Armstrong...)

1. Choose a suitable C2-embedded finite-dimensional
submanifold N < M.

2. The tangent space TpN is complete w.r.t. the Fisher
metric.

3. Evaluate u,— z, and v, at points of N. (These are tangent
vectors of M.)

4. Project onto TpN in the Fisher metric to obtain an
evolution equation on N.
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Projections onto Submanifolds

(Brigo, Pistone, Hanzon, Le Gland, Armstrong...)

1. Choose a suitable C2-embedded finite-dimensional
submanifold N < M.

2. The tangent space TpN is complete w.r.t. the Fisher
metric.

3. Evaluate u,— z, and v, at points of N. (These are tangent
vectors of M.)

4. Project onto TpN in the Fisher metric to obtain an
evolution equation on N.

« The Hilbert manifold is very suited to this purpose

* One could also project in the model space metric
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