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• A talk on a similar subject was given in a workshop held in Nara,
March 2012 without details.

• A related result (but in a different context) will be presented in
the forthcoming IEEE ISIT, July 2016, with the title ”A charac-
terization of statistical manifolds on which the relative entropy is
a Bregman divergence”.
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First, I would like to review some of the fundamental concepts of
information geometry, and then state the main result and explain the
proof of some nontrivial parts.
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A dually flat space

A manifold S equipped with (g,∇,∇∗) such that

(1) g is a Riemannian metric.

(2) ∇ and ∇∗ are flat affine connections which are dual w.r.t. g:

Xg(Y,Z) = g(∇XY,Z) + g(Y,∇∗
XZ).

(3) S is covered by a global ∇-affine chart θ and a global

∇∗-affine chart η.
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The canonical divergence

When θ and η are chosen to satisfy

g
(
∂i, ∂

j
)

= δi
j , ∂i :=

∂

∂θi
, ∂j :=

∂

∂ηj

the canonical divergence D: S × S → R is defined by

(1) D(p∥q) = ϕ(p) + ψ(q) −
∑

i

ηi(p)θi(q)

by functions ψ,ϕ : M → R satisfying

(2) ηi = ∂iψ,

(3) θi = ∂iϕ,

(4) ϕ + ψ =
∑

i

ηi θi
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Another characterization of the canonical divergence

The canonical divergence is also defined as a function D : S × S → R
such that for any p, q, r ∈ S

(1) D(p∥q) ≥ 0

(2) D(p∥q) = 0 ⇔ p = q

(3) D(p∥q) + D(q∥r) − D(p∥r) =
∑

i

{ηi(p) − ηi(q)}
{
θi(r) − θi(q)

}

Note: (3) is the necessary and sufficient condition for mappings θ : S →
Rdim S and η : S → Rdim S to be a pair of dual affine charts.
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Autoparallelity

• For a manifold S with an affine connection ∇ and a submanifold
M ⊂ S,

M is ∇-autoparallel (in S).
def⇐⇒ ∀X,Y : vector fields on M , ∇XY is a vector field on M .
⇐⇒ The restriction ∇|M becomes an affine connection on M .
⇐⇒ M is ∇-totally geodesic (when ∇ is torsion-free).

• We denote

M
∇
⊂ S

def⇐⇒ M is ∇-autoparallel in S

• When S is ∇-flat with a ∇-affine chart θ : S → Rdim S ,

M
∇
⊂ S ⇐⇒ θ(M) forms (an open subset of) an affine subspace

of Rdim S .

=⇒ M is ∇|M -flat. (or we simply say M is ∇-flat.)
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Autoparallel submanifolds of a dually flat space

When

(1) (S, g,∇,∇∗) is dually flat with canonical divergence D and

(2) either M
∇
⊂ S or M

∇∗

⊂ S,

then

(3) M is dually flat w.r.t. (g|M ,∇|M ,πM (∇∗)) or (g|M ,πM (∇),∇∗|M )

(where πM is the g-orthogonal projection onto M)

(4) The canonical divergence of M is D|M×M .
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P(X ) and its autoparallel submanifolds

— as a representative example —

• X : an arbitrary finite set

• S = P(X ) := {p | p : X → (0, 1),
∑

x

p(x) = 1}

• g = g(F) : Fisher metric

• ∇ = ∇(e) : exponential connection, e-connection

• ∇∗ = ∇(m) : mixture connection, m-connection

• D = DKL : DKL(p∥q) =
∑

x

p(x) log
p(x)
q(x)

• We abbreviate ∇(e)- and ∇(m)- as e- and m-, respectively:
e.g., e-geodesic, m-autoparallel , etc.
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P(X ) and its autoparallel submanifolds; cont.

• M
e
⊂ P(X ) ⇐⇒ M is an exponential family on X ;

(e-family for short)

log pθ(x) = C(x) +
∑

i

θiFi(x) − ψ(θ)

θ = (θi): an e-affine chart

ηi(p) = Ep[Fi(X)] =
∑

x

Fi(x)p(x)

η = (ηi): an m-affine chart

• M
m
⊂ P(X ) ⇐⇒ M is a mixture family on X ;

(m-family for short)

pη(x) = C(x) +
∑

i

ηi F i(x)

η = (ηi): an m-affine chart

θi(p) =
∑

x

F i(x) log p(x)

θ = (θi): an e-affine chart
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Chains of autoparallel submanifolds

Given a dually flat space (S, g,∇,∇∗) with canonical divergence D,

• If K
∇
⊂ S and M

∇|K
⊂ S, then

- M
∇
⊂ S ,

- M is dually flat w.r.t. (g|M ,∇|M ,πM (∇∗))
with canonical divergence D|M×M .

• For simplicity, we write this implication as

M
∇
⊂ K

∇
⊂ S =⇒ M

∇
⊂ S and M is dually flat

with canonical divergence D.

Note: the canonical divergence determines the dually flat struc-
ture.

• Similarly,

M
∇∗

⊂ K
∇∗

⊂ S =⇒ M
∇∗

⊂ S and M is dually flat
with canonical divergence D.

• On the other hand,

either M
∇∗

⊂ K
∇
⊂ S or M

∇
⊂ K

∇∗

⊂ S

=⇒ not M
∇
⊂ S nor M

∇∗

⊂ S in general,

but M is still dually flat with canonical divergence D.
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For instance

• M
e
⊂ K

e
⊂ P(X ) =⇒ M

e
⊂ P(X ) (M is an e-family) and M is

dually flat with canonical divergence DKL.

• M
m
⊂ K

m
⊂ P(X ) =⇒ M

m
⊂ P(X ) (M is an m-family) and

M is dually flat with canonical divergence
DKL.

• either M
m
⊂ K

e
⊂ P(X ) or M

e
⊂ K

m
⊂ P(X )

=⇒ not M
e
⊂ P(X ) nor M

m
⊂ P(X ) in general,

but M is dually flat with canonical divergence DKL.
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Main theorem

Given a dually flat space (S, g,∇,∇∗) with canonical divergence D and
a submanifold M ⊂ S, the following conditions are equivalent.

(1) M is dually flat with canonical divergence D.

(2) M
∇∗

⊂ ∃K
∇
⊂ S.

(3) M
∇
⊂ ∃K

∇∗

⊂ S.

(4) ∃K1
∇
⊂ S and ∃K2

∇∗

⊂ S such that

M = K1 ∩ K2 and ∀p ∈ M, Tp(K1)⊥ ⊥ Tp(K2)⊥

(5) ∃K1
∇
⊂ S and ∃K2

∇∗

⊂ S such that

M = K1 ∩ K2 and ∃p ∈ M, Tp(K1)⊥ ⊥ Tp(K2)⊥
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Proof of (1) =⇒ (2): 1/5 slides

We show that

(1) M is dually flat with canonical divergence D.

implies

(2) M
∇∗

⊂ ∃K
∇
⊂ S.

• Let m := dim M ≤ n := dim S.

• Since (S, g,∇,∇∗) is dually flat, there exist
a ∇- affine chart σ : S → Rn×1 (column vectors) and
a ∇∗-affine chart ζ : S → R1×n (row vectors) such that

∀p, q, r ∈ S

D(p∥q) + D(q∥r) − D(p∥r) = (ζ(p) − ζ(q)) (σ(r) − σ(q)) .

• Assume (1), so that there exists a pair of affine charts
θ : M → Rm×1 and η : M → R1×m satisfying

∀p, q, r ∈ M

D(p∥q) + D(q∥r) − D(p∥r) = (η(p) − η(q)) (θ(r) − θ(q)) .
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Proof of (1) =⇒ (2), 2/5 slides

• Fix a point p0 ∈ M arbitrarily, and let

V := span {σ(p) − σ(p0) | p ∈ M} ⊂ Rn×1

and

K := {p ∈ S |σ(p) − σ(p0) ∈ V } ⊂ S.

Note: the definitions of V and K do not depend on p0.

• It is obvious that

M ⊂ K
∇
⊂ S.

• Let k := dimV = dimK. (m ≤ k ≤ n)

Then there exists a matrix F : n × k such that V = ImF .

• Define a ∇-affine chart ρ : K → Rk×1 (column vectors) of K by

∀p ∈ K, σ(p) − σ(p0) = Fρ(p).

• Let ξ : K → R1×k (row vectors) be defined by

∀p ∈ K, ξ(p) = ζ(p)F .
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Proof of (1) =⇒ (2), 3/5 slides

• For ∀p, q, r ∈ K, we have

(ξ(p) − ξ(q)) (ρ(r) − ρ(q)) = (ζ(p) − ζ(q))F (ρ(r) − ρ(q))

= (ζ(p) − ζ(q)) (σ(r) − σ(q))

= D(p∥q) + D(q∥r) − D(p∥r),

which implies that ξ is ∇∗-affine chart of K.

manifold dimension ∇-chart (column vectors) ∇∗-chart (row vectors)
S n σ ζ

K k ρ ξ

M m θ η
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Proof of (1) =⇒ (2), 4/5 slides

• Lemma:

∀f ∈ V (⊂ Rn×1), ∃a ∈ Rm×1, ∀p ∈ M ,

(ζ(p) − ζ(p0)) f = (η(p) − η(p0)) a. (♯)

∵) It suffices to show (♯) in the case when f = σ(q) − σ(p0) for
an arbitrary q ∈ M , since V is the linear span of such f ’s. In this
case, for ∀p ∈ M we have

(ζ(p) − ζ(p0)) f = (ζ(p) − ζ(p0)) (σ(q) − σ(p0))

= D(p∥p0) + D(p0∥q) − D(p∥q)

= (η(p) − η(p0)) (θ(q) − θ(p0)) ,

which means that (♯) holds by setting a := θ(q) − θ(p0).

• Since V = ImF , the previous lemma implies the existence of a
matrix A : m × k such that

∀p ∈ M, (ζ(p) − ζ(p0))F = (η(p) − η(p0))A. (♭)
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Proof of (1) =⇒ (2), 5/5 slides

• Since the LHS of (♭) is (ζ(p) − ζ(p0))F = ξ(p) − ξ(p0), we have

∀p ∈ M, ξ(p) = η(p)A + b (♮)

where b := ξ(p0) − η(p0)A.

• (♮) means that ξ(M) forms an affine subspace of the ξ-coordinate

space Rk and hence M
∇∗

⊂ K. (QED)

manifold dimension ∇-chart (column vectors) ∇∗-chart (row vectors)
S n σ ζ

K k ρ ξ

M m θ η
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Proof of (2) =⇒ (4), an outline

(2) M
∇∗

⊂ ∃K
∇
⊂ S.

=⇒ (4) ∃K1
∇
⊂ S and ∃K2

∇∗

⊂ S such that

M = K1 ∩ K2 and ∀p ∈ M, Tp(K1)⊥ ⊥ Tp(K2)⊥

• Assume that M
∇∗

⊂ K
∇
⊂ S and fix a point p0 ∈ M arbitrarily.

Let σ : S → Rn×1 and ζ : S → R1×n be a pair of dual affine
charts.

• Since K
∇
⊂ S, there exits a matrix F : n × k such that

K = {p ∈ S |σ(p) − σ(p0) ∈ ImF}.

Let ξ : K → R1×k be defined by ξ(p) = ζ(p)F for ∀p ∈ K.
Then ξ becomes a ∇∗ chart of K.

• Since M
∇∗

⊂ K, there exists a linear subspace W of R1×k such
that

M = {p ∈ K | ξ(p) − ξ(p0) ∈ W}

= {p ∈ K | ζ(p)F − ξ(p0) ∈ W} = K1 ∩ K2

where K1 := K and K2 := {p ∈ S | ζ(p)F − ξ(p0) ∈ W}.

• K1
∇
⊂ S and K2

∇∗

⊂ S are obvious, and

∀p ∈ M, Tp(K1)⊥ ⊥ Tp(K2)⊥

can be verified by some linear algebraic argument.
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Let us observe that the set of stationary markov joint distributions
forms a dually flat space which can be regarded as an example of our
theorem.
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Markov joint distributions

• Let X be an arbitrary finite set and let X n = X × · · ·× X︸ ︷︷ ︸
n

.

• S := P(X n), the set of positive n-joint distributions.

• An n-joint distribution p ∈ S is markov

def⇐⇒ X1 − X2 − · · ·− Xn is a Markov process

for Xn = (X1, · · · , Xn) ∼ p.

⇐⇒ ∃u1, . . . , un−1 : X 2 → R+, ∀xn = (x1, . . . , xn) ∈ X n,

p(xn) =
n−1∏

t=1

ut(xt, xt+1).

⇐⇒ ∃π ∈ P(X ), ∃w1, . . . , wn−1 ∈ P(X |X ),

∀xn = (x1, . . . , xn) ∈ X n,

p(xn) = π(x1)
n−1∏

t=1

wt(xt+1|xt).

20

�21



Markov joint distributions, cont.

• Kmar := {p ∈ S | p is markov}.

• Kmar is an exponential family.
(∵ the Hammersley-Clifford theorem)

• For X = {0, 1, . . . ,m − 1},

N := dimKmar = n(m − 1) + (n − 1)(m − 1)2,

and Kmar = {pρ | ρ = (ρit; ρijt) ∈ RN} where

log pρ(xn) =
n∑

t=1

m−1∑

i=1

ρitδi(xt)

+
n−1∑

t=1

m−1∑

i=1

m−1∑

j=1

ρijtδij(xt, xt+1) − ψ(ρ).
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Stationary joint distributions

• For an n-joint distribution p ∈ S = P(X n), its marginal distri-
butions p(k)

t ∈ P(X k) for k ∈ {1, . . . , n − 1} and t ∈ {1, . . . , n −
k + 1} are defined by

p(n−1)
1 (xn−1) =

∑

x′

p(xn−1, x′),

p(n−1)
2 (xn−1) =

∑

x′

p(x′, xn−1),

p(n−2)
1 (xn−2) =

∑

x′

p(n−1)
1 (xn−2, x′),

p(n−2)
2 (xn−2) =

∑

x′

p(n−1)
1 (x′, xn−2) =

∑

x′

p(n−1)
2 (xn−2, x′),

p(n−2)
3 (xn−2) =

∑

x′

p(n−1)
2 (x′, xn−2),

· · · · · · · · · · · ·

• An n-joint distribution p ∈ S is stationary

def⇐⇒ p(n−1)
1 = p(n−1)

2

⇐⇒ ∀k ∈ {1, . . . , n − 1}, p(k)
t does not depend on t.
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Stationary joint distributions, cont.

• Ksta := {p ∈ S | p is stationary}.

• Ksta is a mixture family.
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Stationary markov joint distributions

• M := Kmar ∩ Ksta.

• p ∈ M ⇐⇒ ∃w ∈ P(X |X ) s.t. ∀xn ∈ X n,

p(xn) = p(n)
w (xn) := πw(x1)

n−1∏

t=1

w(xt+1|xt)

where πw is the stationary distribution of w:

πw(x) =
∑

x′

w(x|x′)πw(x′).

• It does not hold that ∀p ∈ M, Tp(Kmar)⊥ ⊥ Tp(Ksta)⊥.
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Stationary markov joint distributions, cont.

• Let

Ksta,2 :=
{

p ∈ S | p(2)
t does not depend on t

}
(⊃ Ksta).

Then

– Ksta,2 is a mixture family.

– M = Kmar ∩ Ksta,2.

– ∀p ∈ M, Tp(Kmar)⊥ ⊥ Tp(Ksta,2)⊥.

• Therefore, we have

– M is dually flat with canonical divergence DKL.

– M
m
⊂ Kmar and M

e
⊂ Ksta,2.

• D = DKL|M×M is represented as

D(p(n)
w1

∥p(n)
w2

) = D(πw1∥πw2)+(n−1)
∑

x

πw1(x)D(w1(·|x)∥w2(·|x))

• M is not an e-family nor m-family.
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Stationary markov joint distributions, cont. cont.

• Recall that Kmar = {pρ | ρ ∈ RN} with

log pρ(xn) =
n∑

t=1

m−1∑

i=1

ρitδi(xt)

+
n−1∑

t=1

m−1∑

i=1

m−1∑

j=1

ρijtδij(xt, xt+1) − ψ(ρ).

• There exists a subset U ⊂ RN such that M = {pρ | ρ ∈ U} .

• A pair of dual affine charts of M is given by

– e-affine chart θ = (θi, θij):

θi =
n∑

t=1

ρit, θij =
n−1∑

t=1

ρijt (∀ρ ∈ U)

– m-affine chart: η = (ηi, ηij):

ηi(p) = Ep [δi(Xt)] , ηij(p) = Ep [δij(Xt, Xt+1)]

(do not depend on t)
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Thank you for listening! 
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