IGAIA IV, Liblice, June 2016

In honor of Amari-sensei

Revisit to the Autoparallelity and the Canonical Divergence for Dually Flat Spaces

Hiroshi Nagaoka

The University of Electro-Communications, Tokyo.

- A talk on a similar subject was given in a workshop held in Nara, March 2012 without details.
- A related result (but in a different context) will be presented in the forthcoming IEEE ISIT, July 2016, with the title "A characterization of statistical manifolds on which the relative entropy is a Bregman divergence".

First, I would like to review some of the fundamental concepts of information geometry, and then state the main result and explain the proof of some nontrivial parts.

A dually flat space

- A manifold S equipped with (g, ∇, ∇^*) such that
 - (1) g is a Riemannian metric.
 - (2) ∇ and ∇^* are flat affine connections which are dual w.r.t. g: $Xg(Y,Z) = g(\nabla_X Y,Z) + g(Y,\nabla_X^* Z).$
 - (3) S is covered by a global ∇ -affine chart θ and a global

 ∇^* -affine chart η .

The canonical divergence

When θ and η are chosen to satisfy

$$g\left(\partial_i,\partial^j\right) = \delta^i_j, \qquad \partial_i := \frac{\partial}{\partial\theta^i}, \quad \partial^j := \frac{\partial}{\partial\eta_j}$$

the canonical divergence $D: S \times S \to \mathbb{R}$ is defined by

(1)
$$D(p||q) = \varphi(p) + \psi(q) - \sum_{i} \eta_i(p)\theta^i(q)$$

by functions $\psi, \varphi: M \to \mathbb{R}$ satisfying

(2) $\eta_i = \partial_i \psi,$

(3)
$$\theta^i = \partial^i \varphi,$$

(4)
$$\varphi + \psi = \sum_{i} \eta_i \, \theta^i$$

Another characterization of the canonical divergence

The canonical divergence is also defined as a function $D:S\times S\to \mathbb{R}$ such that for any $p,q,r\in S$

(1)
$$D(p||q) \ge 0$$

(2) $D(p||q) = 0 \iff p = q$
(3) $D(p||q) + D(q||r) - D(p||r) = \sum_{i} \{\eta_i(p) - \eta_i(q)\} \{\theta^i(r) - \theta^i(q)\}$

Note: (3) is the necessary and sufficient condition for mappings $\theta: S \to \mathbb{R}^{\dim S}$ and $\eta: S \to \mathbb{R}^{\dim S}$ to be a pair of dual affine charts.

Autoparallelity

- For a manifold S with an affine connection ∇ and a submanifold $M \subset S$,
 - $M ext{ is } \nabla ext{-autoparallel} (ext{ in } S).$ $\stackrel{\text{def}}{\iff} \forall X, Y ext{: vector fields on } M, \nabla_X Y ext{ is a vector field on } M.$ $\iff \text{The restriction } \nabla|_M ext{ becomes an affine connection on } M.$ $\iff M ext{ is } \nabla ext{-totally geodesic (when } \nabla ext{ is torsion-free)}.$
- We denote

 $M \stackrel{\nabla}{\subset} S \stackrel{\text{def}}{\iff} M \text{ is } \nabla\text{-autoparallel in } S$

• When S is ∇ -flat with a ∇ -affine chart $\theta: S \to \mathbb{R}^{\dim S}$,

 $M \stackrel{\nabla}{\subset} S \iff \theta(M) \text{ forms (an open subset of) an affine subspace}$ of $\mathbb{R}^{\dim S}$.

 $\implies M \text{ is } \nabla|_M \text{-flat.}$ (or we simply say $M \text{ is } \nabla \text{-flat.}$)

Autoparallel submanifolds of a dually flat space

When

(1) (S, g, ∇, ∇^*) is dually flat with canonical divergence D and (2) either $M \stackrel{\nabla}{\subset} S$ or $M \stackrel{\nabla^*}{\subset} S$,

then

(3) M is dually flat w.r.t. $(g|_M, \nabla|_M, \pi_M(\nabla^*))$ or $(g|_M, \pi_M(\nabla), \nabla^*|_M)$

(where π_M is the g-orthogonal projection onto M)

(4) The canonical divergence of M is $D|_{M \times M}$.

 $\mathscr{P}(\mathscr{X})$ and its autoparallel submanifolds

- as a representative example -

• \mathscr{X} : an arbitrary finite set

•
$$S = \mathscr{P}(\mathscr{X}) := \{ p \mid p : \mathscr{X} \to (0,1), \sum_{x} p(x) = 1 \}$$

- $g = g^{(F)}$: Fisher metric
- $\nabla = \nabla^{(e)}$: exponential connection, e-connection
- $\nabla^* = \nabla^{(m)}$: mixture connection, m-connection

•
$$D = D_{\text{KL}} : D_{\text{KL}}(p||q) = \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

We abbreviate ∇^(e)- and ∇^(m)- as e- and m-, respectively:
 e.g., e-geodesic, m-autoparallel , etc.

 $\mathscr{P}(\mathscr{X})$ and its autoparallel submanifolds; cont.

• $M \stackrel{\mathrm{e}}{\subset} \mathscr{P}(\mathscr{X}) \iff M$ is an exponential family on \mathscr{X} ; (e-family for short)

$$\log p_{\theta}(x) = C(x) + \sum_{i} \theta^{i} F_{i}(x) - \psi(\theta)$$

 $\theta = (\theta^i)$: an e-affine chart

$$\eta_i(p) = \mathcal{E}_p[F_i(X)] = \sum_x F_i(x)p(x)$$

$$\eta = (\eta_i)$$
: an m-affine chart

• $M \stackrel{\mathrm{m}}{\subset} \mathscr{P}(\mathscr{X}) \iff M$ is a mixture family on \mathscr{X} ; (m-family for short)

$$p_{\eta}(x) = C(x) + \sum_{i} \eta_{i} F^{i}(x)$$

 $\eta = (\eta_i)$: an m-affine chart

$$\theta^i(p) = \sum_x F^i(x) \log p(x)$$

 $\theta = (\theta^i)$: an e-affine charton

Chains of autoparallel submanifolds

Given a dually flat space (S,g,∇,∇^*) with canonical divergence D,

• If $K \stackrel{\nabla}{\subset} S$ and $M \stackrel{\nabla|_K}{\subset} S$, then - $M \stackrel{\nabla}{\subset} S$,

> - M is dually flat w.r.t. $(g|_M, \nabla|_M, \pi_M(\nabla^*))$ with canonical divergence $D|_{M \times M}$.

• For simplicity, we write this implication as

 $M \stackrel{\nabla}{\subset} K \stackrel{\nabla}{\subset} S \implies M \stackrel{\nabla}{\subset} S$ and M is dually flat with canonical divergence D.

Note: the canonical divergence determines the dually flat structure.

• Similarly,

 $M \stackrel{\nabla^*}{\underset{}{\subset}}^* K \stackrel{\nabla^*}{\underset{}{\subset}}^* S \implies M \stackrel{\nabla^*}{\underset{}{\subset}}^* S \text{ and } M \text{ is dually flat}$ with canonical divergence D.

• On the other hand,

either
$$M \stackrel{\nabla}{\subset} K \stackrel{\nabla}{\subset} S$$
 or $M \stackrel{\nabla}{\subset} K \stackrel{\nabla}{\subset} S$
 \implies not $M \stackrel{\nabla}{\subset} S$ nor $M \stackrel{\nabla}{\subset} S$ in general,

but M is still dually flat with canonical divergence D.

For instance

• $M \stackrel{\text{e}}{\subset} K \stackrel{\text{e}}{\subset} \mathscr{P}(\mathscr{X}) \implies M \stackrel{\text{e}}{\subset} \mathscr{P}(\mathscr{X})$ (*M* is an e-family) and *M* is dually flat with canonical divergence D_{KL} .

- $M \stackrel{\mathrm{m}}{\subset} K \stackrel{\mathrm{m}}{\subset} \mathscr{P}(\mathscr{X}) \Longrightarrow M \stackrel{\mathrm{m}}{\subset} \mathscr{P}(\mathscr{X})$ (*M* is an m-family) and *M* is dually flat with canonical divergence D_{KL} .
- either $M \stackrel{\mathrm{m}}{\subset} K \stackrel{\mathrm{e}}{\subset} \mathscr{P}(\mathscr{X})$ or $M \stackrel{\mathrm{e}}{\subset} K \stackrel{\mathrm{m}}{\subset} \mathscr{P}(\mathscr{X})$

 \Longrightarrow not $M \stackrel{\mathrm{e}}{\subset} \mathscr{P}(\mathscr{X})$ nor $M \stackrel{\mathrm{m}}{\subset} \mathscr{P}(\mathscr{X})$ in general,

but M is dually flat with canonical divergence D_{KL} .

Main theorem

Given a dually flat space (S, g, ∇, ∇^*) with canonical divergence D and a submanifold $M \subset S$, the following conditions are equivalent.

- (1) M is dually flat with canonical divergence D.
- (2) $M \stackrel{\nabla}{\subset} \exists K \stackrel{\nabla}{\subset} S.$ (3) $M \stackrel{\nabla}{\subset} \exists K \stackrel{\nabla}{\subset} S.$ (4) $\exists K_1 \stackrel{\nabla}{\subset} S$ and $\exists K_2 \stackrel{\nabla}{\subset} S$ such that $M = K_1 \cap K_2$ and $\forall p \in M, \ T_p(K_1)^{\perp} \perp T_p(K_2)^{\perp}$ (5) $\exists K_1 \stackrel{\nabla}{\subset} S$ and $\exists K_2 \stackrel{\nabla}{\subset} S$ such that $M = K_1 \cap K_2$ and $\exists p \in M, \ T_p(K_1)^{\perp} \perp T_p(K_2)^{\perp}$

Proof of $(1) \Longrightarrow (2)$: 1/5 slides

We show that

(1) M is dually flat with canonical divergence D.

implies

(2)
$$M \stackrel{\nabla^*}{\subset} \exists K \stackrel{\nabla}{\subset} S$$

- Let $m := \dim M \le n := \dim S$.
- Since (S, g, ∇, ∇^*) is dually flat, there exist a ∇ - affine chart $\sigma : S \to \mathbb{R}^{n \times 1}$ (column vectors) and a ∇^* -affine chart $\zeta : S \to \mathbb{R}^{1 \times n}$ (row vectors) such that

 $\forall p,q,r \in S$

$$D(p||q) + D(q||r) - D(p||r) = (\zeta(p) - \zeta(q)) (\sigma(r) - \sigma(q)).$$

• Assume (1), so that there exists a pair of affine charts $\theta: M \to \mathbb{R}^{m \times 1}$ and $\eta: M \to \mathbb{R}^{1 \times m}$ satisfying

 $\forall p,q,r \in M$

$$D(p||q) + D(q||r) - D(p||r) = (\eta(p) - \eta(q)) (\theta(r) - \theta(q)).$$

Proof of
$$(1) \Longrightarrow (2), 2/5$$
 slides

• Fix a point $p_0 \in M$ arbitrarily, and let

$$V := \operatorname{span} \left\{ \sigma(p) - \sigma(p_0) \, | \, p \in M \right\} \subset \mathbb{R}^{n \times 1}$$

and

$$\boldsymbol{K} := \{ p \in S \mid \sigma(p) - \sigma(p_0) \in V \} \subset S.$$

Note: the definitions of V and K do not depend on p_0 .

• It is obvious that

$$M \subset K \stackrel{\nabla}{\subset} S.$$

• Let $k := \dim V = \dim K$. $(m \le k \le n)$

Then there exists a matrix $F : n \times k$ such that V = ImF.

• Define a ∇ -affine chart $\rho: K \to \mathbb{R}^{k \times 1}$ (column vectors) of K by

$$\forall p \in \mathbf{K}, \quad \sigma(p) - \sigma(p_0) = F\rho(p).$$

• Let $\xi: K \to \mathbb{R}^{1 \times k}$ (row vectors) be defined by

 $\forall p \in \mathbf{K}, \quad \xi(p) = \zeta(p)F.$

Proof of $(1) \implies (2), 3/5$ slides

• For $\forall p, q, r \in \mathbf{K}$, we have

$$\begin{aligned} (\xi(p) - \xi(q)) \left(\rho(r) - \rho(q)\right) &= (\zeta(p) - \zeta(q)) F \left(\rho(r) - \rho(q)\right) \\ &= (\zeta(p) - \zeta(q)) \left(\sigma(r) - \sigma(q)\right) \\ &= D(p \| q) + D(q \| r) - D(p \| r), \end{aligned}$$

which implies that ξ is ∇^* -affine chart of K.

manifold	dimension	∇ -chart (column vectors)	∇^* -chart (row vectors)
S	n	σ	ζ
K	k	ρ	ξ
M	m	θ	η

Proof of $(1) \Longrightarrow (2), 4/5$ slides

• Lemma:

$$\forall f \in V \ (\subset \mathbb{R}^{n \times 1}), \ \exists a \in \mathbb{R}^{m \times 1}, \ \forall p \in M,$$
$$(\zeta(p) - \zeta(p_0)) \ f = (\eta(p) - \eta(p_0)) \ a. \tag{\sharp}$$

 \therefore) It suffices to show (\sharp) in the case when $f = \sigma(q) - \sigma(p_0)$ for an arbitrary $q \in M$, since V is the linear span of such f's. In this case, for $\forall p \in M$ we have

$$(\zeta(p) - \zeta(p_0)) f = (\zeta(p) - \zeta(p_0)) (\sigma(q) - \sigma(p_0))$$

= $D(p || p_0) + D(p_0 || q) - D(p || q)$
= $(\eta(p) - \eta(p_0)) (\theta(q) - \theta(p_0)),$

which means that (\sharp) holds by setting $a := \theta(q) - \theta(p_0)$.

Since V = ImF, the previous lemma implies the existence of a matrix A : m × k such that

$$\forall p \in M, \ \left(\zeta(p) - \zeta(p_0)\right) F = \left(\eta(p) - \eta(p_0)\right) A.$$
 (b)

Proof of $(1) \Longrightarrow (2), 5/5$ slides

• Since the LHS of (\flat) is $(\zeta(p) - \zeta(p_0)) F = \xi(p) - \xi(p_0)$, we have

$$\forall p \in M, \ \xi(p) = \eta(p)A + b \qquad (\natural)$$

where $b := \xi(p_0) - \eta(p_0)A$.

• (\natural) means that $\xi(M)$ forms an affine subspace of the ξ -coordinate space \mathbb{R}^k and hence $M \subset^{\Sigma^*} K$. (QED)

manifold	dimension	∇ -chart (column vectors)	∇^* -chart (row vectors)
S	n	σ	ζ
K	k	ρ	ξ
M	m	θ	η

Proof of $(2) \Longrightarrow (4)$, an outline

(2)
$$M \subset^* \exists K \subset S$$
.
 \implies (4) $\exists K_1 \subset S$ and $\exists K_2 \subset^* S$ such that
 $M = K_1 \cap K_2$ and $\forall p \in M, \ T_p(K_1)^{\perp} \perp T_p(K_2)^{\perp}$

- Assume that $M \subset^* K \subset S$ and fix a point $p_0 \in M$ arbitrarily. Let $\sigma : S \to \mathbb{R}^{n \times 1}$ and $\zeta : S \to \mathbb{R}^{1 \times n}$ be a pair of dual affine charts.
- Since $K \subset S$, there exits a matrix $F : n \times k$ such that

$$K = \{ p \in S \, | \, \sigma(p) - \sigma(p_0) \in \mathrm{Im}F \}.$$

Let $\xi: K \to \mathbb{R}^{1 \times k}$ be defined by $\xi(p) = \zeta(p)F$ for $\forall p \in K$. Then ξ becomes a ∇^* chart of K.

• Since $M \subset^{\mathbb{V}^*} K$, there exists a linear subspace W of $\mathbb{R}^{1 \times k}$ such that

$$M = \{ p \in K \,|\, \xi(p) - \xi(p_0) \in W \}$$
$$= \{ p \in K \,|\, \zeta(p)F - \xi(p_0) \in W \} = K_1 \cap K_2$$

where $K_1 := K$ and $K_2 := \{ p \in S \mid \zeta(p)F - \xi(p_0) \in W \}.$

• $K_1 \stackrel{\nabla}{\subset} S$ and $K_2 \stackrel{\nabla^*}{\subset} S$ are obvious, and

$$\forall p \in M, \ T_p(K_1)^{\perp} \perp T_p(K_2)^{\perp}$$

can be verified by some linear algebraic argument.

Let us observe that the set of stationary markov joint distributions forms a dually flat space which can be regarded as an example of our theorem.

Markov joint distributions

- Let \mathscr{X} be an arbitrary finite set and let $\mathscr{X}^n = \underbrace{\mathscr{X} \times \cdots \times \mathscr{X}}_{n}$.
- $S := \mathscr{P}(\mathscr{X}^n)$, the set of positive *n*-joint distributions.
- An *n*-joint distribution $p \in S$ is markov

 $\stackrel{\text{def}}{\iff} X_1 - X_2 - \dots - X_n$ is a Markov process for $X^n = (X_1, \cdots, X_n) \sim p$. $\iff \exists u_1, \dots, u_{n-1} : \mathscr{X}^2 \to \mathbb{R}^+, \quad \forall x^n = (x_1, \dots, x_n) \in \mathscr{X}^n,$ $p(x^n) = \prod^n u_t(x_t, x_{t+1}).$ $\iff \exists \pi \in \mathscr{P}(\mathscr{X}), \ \exists w_1, \dots, w_{n-1} \in \mathscr{P}(\mathscr{X} \mid \mathscr{X}),$ $\forall x^n = (x_1, \dots, x_n) \in \mathscr{X}^n,$ n-1 $p(x^n) = \pi(x_1) \prod w_t(x_{t+1}|x_t).$ 21

Markov joint distributions, cont.

- $K_{\text{mar}} := \{ p \in S \mid p \text{ is markov} \}.$
- K_{mar} is an exponential family.
 (:: the Hammersley-Clifford theorem)

• For
$$\mathscr{X} = \{0, 1, \dots, m-1\},\$$

$$N := \dim K_{\max} = n(m-1) + (n-1)(m-1)^2,$$

and $K_{\text{mar}} = \{ p_{\rho} \mid \rho = (\rho^{it}; \rho^{ijt}) \in \mathbb{R}^N \}$ where

$$\log p_{\rho}(x^{n}) = \sum_{t=1}^{n} \sum_{i=1}^{m-1} \rho^{it} \delta_{i}(x_{t}) + \sum_{t=1}^{n-1} \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} \rho^{ijt} \delta_{ij}(x_{t}, x_{t+1}) - \psi(\rho).$$

Stationary joint distributions

• For an *n*-joint distribution $p \in S = \mathscr{P}(\mathscr{X}^n)$, its marginal distributions $p_t^{(k)} \in \mathscr{P}(\mathscr{X}^k)$ for $k \in \{1, \ldots, n-1\}$ and $t \in \{1, \ldots, n-k+1\}$ are defined by

$$p_1^{(n-1)}(x^{n-1}) = \sum_{x'} p(x^{n-1}, x'),$$

$$p_2^{(n-1)}(x^{n-1}) = \sum_{x'} p(x', x^{n-1}),$$

$$p_1^{(n-2)}(x^{n-2}) = \sum_{x'} p_1^{(n-1)}(x^{n-2}, x'),$$

$$p_2^{(n-2)}(x^{n-2}) = \sum_{x'} p_1^{(n-1)}(x', x^{n-2}) = \sum_{x'} p_2^{(n-1)}(x^{n-2}, x'),$$

$$p_3^{(n-2)}(x^{n-2}) = \sum_{x'} p_2^{(n-1)}(x', x^{n-2}),$$
.....

• An *n*-joint distribution $p \in S$ is stationary

$$\stackrel{\text{def}}{\iff} p_1^{(n-1)} = p_2^{(n-1)}$$
$$\iff \forall k \in \{1, \dots, n-1\}, \ p_t^{(k)} \text{ does not depend on } t.$$

Stationary joint distributions, cont.

- $K_{\text{sta}} := \{ p \in S \mid p \text{ is stationary} \}.$
- K_{sta} is a mixture family.

Stationary markov joint distributions

- $M := K_{\text{mar}} \cap K_{\text{sta}}.$
- $p \in M \iff \exists w \in \mathscr{P}(\mathscr{X}|\mathscr{X}) \text{ s.t. } \forall x^n \in \mathscr{X}^n,$

$$p(x^n) = p_w^{(n)}(x^n) := \pi_w(x_1) \prod_{t=1}^{n-1} w(x_{t+1}|x_t)$$

where π_w is the stationary distribution of w:

$$\pi_w(x) = \sum_{x'} w(x|x')\pi_w(x').$$

• It does not hold that $\forall p \in M, T_p(K_{\text{mar}})^{\perp} \perp T_p(K_{\text{sta}})^{\perp}$.

Stationary markov joint distributions, cont.

• Let

$$K_{\mathrm{sta},2} := \left\{ p \in S \mid p_t^{(2)} \text{ does not depend on } t \right\} \ (\supset K_{\mathrm{sta}}).$$

Then

- $K_{\text{sta},2}$ is a mixture family.
- $M = K_{\max} \cap K_{\operatorname{sta},2}.$
- $\forall p \in M, T_p(K_{\text{mar}})^{\perp} \perp T_p(K_{\text{sta},2})^{\perp}.$
- Therefore, we have
 - M is dually flat with canonical divergence $D_{\rm KL}$.

$$- M \stackrel{\mathrm{m}}{\subset} K_{\mathrm{mar}} \text{ and } M \stackrel{\mathrm{e}}{\subset} K_{\mathrm{sta},2}$$

• $D = D_{\mathrm{KL}}|_{M \times M}$ is represented as

$$D(p_{w_1}^{(n)} \| p_{w_2}^{(n)}) = D(\pi_{w_1} \| \pi_{w_2}) + (n-1) \sum_x \pi_{w_1}(x) D(w_1(\cdot | x) \| w_2(\cdot | x))$$

• M is not an e-family nor m-family.

Stationary markov joint distributions, cont. cont.

• Recall that $K_{\text{mar}} = \{p_{\rho} \mid \rho \in \mathbb{R}^N\}$ with

$$\log p_{\rho}(x^{n}) = \sum_{t=1}^{n} \sum_{i=1}^{m-1} \rho^{it} \delta_{i}(x_{t}) + \sum_{t=1}^{n-1} \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} \rho^{ijt} \delta_{ij}(x_{t}, x_{t+1}) - \psi(\rho).$$

- There exists a subset $U \subset \mathbb{R}^N$ such that $M = \{p_\rho \mid \rho \in U\}$.
- A pair of dual affine charts of M is given by

- e-affine chart
$$\theta = (\theta^i, \theta^{ij})$$
:

$$\theta^{i} = \sum_{t=1}^{n} \rho^{it}, \quad \theta^{ij} = \sum_{t=1}^{n-1} \rho^{ijt} \qquad (\forall \rho \in U)$$

– m-affine chart: $\eta = (\eta_i, \eta_{ij})$:

$$\eta_i(p) = E_p\left[\delta_i(X_t)\right], \quad \eta_{ij}(p) = E_p\left[\delta_{ij}(X_t, X_{t+1})\right]$$

(do not depend on t)

Thank you for listening!