IGAIA IV, Liblice, June 2016

In honor of Amari-sensei

Revisit to the Autoparallelity
and the Canonical Divergence for Dually Flat Spaces

Hiroshi Nagaoka

The University of Electro-Communications, Tokyo.

- A talk on a similar subject was given in a workshop held in Nara, March 2012 without details.
- A related result (but in a different context) will be presented in the forthcoming IEEE ISIT, July 2016, with the title "A characterization of statistical manifolds on which the relative entropy is a Bregman divergence".

First, I would like to review some of the fundamental concepts of information geometry, and then state the main result and explain the proof of some nontrivial parts.
A dually flat space

A manifold S equipped with $\left(g, \nabla, \nabla^{*}\right)$ such that
(1) g is a Riemannian metric.
(2) ∇ and ∇^{*} are flat affine connections which are dual w.r.t. g :

$$
X g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right)
$$

(3) S is covered by a global ∇-affine chart θ and a global ∇^{*}-affine chart η.

The canonical divergence

When θ and η are chosen to satisfy

$$
g\left(\partial_{i}, \partial^{j}\right)=\delta_{j}^{i}, \quad \partial_{i}:=\frac{\partial}{\partial \theta^{i}}, \quad \partial^{j}:=\frac{\partial}{\partial \eta_{j}}
$$

the canonical divergence $D: S \times S \rightarrow \mathbb{R}$ is defined by
(1) $D(p \| q)=\varphi(p)+\psi(q)-\sum_{i} \eta_{i}(p) \theta^{i}(q)$
by functions $\psi, \varphi: M \rightarrow \mathbb{R}$ satisfying
(2) $\eta_{i}=\partial_{i} \psi$,
(3) $\theta^{i}=\partial^{i} \varphi$,
(4) $\varphi+\psi=\sum_{i} \eta_{i} \theta^{i}$

Another characterization of the canonical divergence

The canonical divergence is also defined as a function $D: S \times S \rightarrow \mathbb{R}$ such that for any $p, q, r \in S$
(1) $D(p \| q) \geq 0$
(2) $D(p \| q)=0 \Leftrightarrow p=q$
(3) $D(p \| q)+D(q \| r)-D(p \| r)=\sum_{i}\left\{\eta_{i}(p)-\eta_{i}(q)\right\}\left\{\theta^{i}(r)-\theta^{i}(q)\right\}$

Note: (3) is the necessary and sufficient condition for mappings $\theta: S \rightarrow$ $\mathbb{R}^{\operatorname{dim} S}$ and $\eta: S \rightarrow \mathbb{R}^{\operatorname{dim} S}$ to be a pair of dual affine charts.

Autoparallelity

- For a manifold S with an affine connection ∇ and a submanifold $M \subset S$,
M is ∇-autoparallel (in S).
$\stackrel{\text { def }}{\Longleftrightarrow} \forall X, Y$: vector fields on $M, \nabla_{X} Y$ is a vector field on M.
\Longleftrightarrow The restriction $\left.\nabla\right|_{M}$ becomes an affine connection on M.
$\Longleftrightarrow M$ is ∇-totally geodesic (when ∇ is torsion-free).
- We denote
$M \stackrel{\nabla}{\subset} S \stackrel{\text { def }}{\Longleftrightarrow} M$ is ∇-autoparallel in S
- When S is ∇-flat with a ∇-affine chart $\theta: S \rightarrow \mathbb{R}^{\operatorname{dim} S}$,

$$
\begin{aligned}
M \stackrel{\nabla}{\subset} S \Longleftrightarrow & \theta(M) \text { forms (an open subset of) an affine subspace } \\
& \text { of } \mathbb{R}^{\operatorname{dim} S} . \\
& \Longrightarrow M \text { is }\left.\nabla\right|_{M^{-}} \text {-flat. (or we simply say } M \text { is } \nabla \text {-flat.) }
\end{aligned}
$$

```
Autoparallel submanifolds of a dually flat space
```

When
(1) $\left(S, g, \nabla, \nabla^{*}\right)$ is dually flat with canonical divergence D and
(2) either $M \stackrel{\nabla}{\subset} S$ or $M \stackrel{\nabla^{*}}{\subset} S$,
then
(3) M is dually flat w.r.t. $\left(\left.g\right|_{M},\left.\nabla\right|_{M}, \pi_{M}\left(\nabla^{*}\right)\right)$ or $\left(\left.g\right|_{M}, \pi_{M}(\nabla),\left.\nabla^{*}\right|_{M}\right)$ (where π_{M} is the g-orthogonal projection onto M)
(4) The canonical divergence of M is $\left.D\right|_{M \times M}$.

$$
\mathscr{P}(\mathscr{X}) \text { and its autoparallel submanifolds }
$$

- as a representative example -
- \mathscr{X} : an arbitrary finite set
- $S=\mathscr{P}(\mathscr{X}):=\left\{p \mid p: \mathscr{X} \rightarrow(0,1), \quad \sum_{x} p(x)=1\right\}$
- $g=g^{(\mathrm{F})}$: Fisher metric
- $\nabla=\nabla^{(e)}$: exponential connection, e-connection
- $\nabla^{*}=\nabla^{(\mathrm{m})}$: mixture connection, m-connection
- $D=D_{\mathrm{KL}}: D_{\mathrm{KL}}(p \| q)=\sum_{x} p(x) \log \frac{p(x)}{q(x)}$
- We abbreviate $\nabla^{(\mathrm{e})}$ - and $\nabla^{(\mathrm{m})}$ - as e- and m-, respectively: e.g., e-geodesic, m-autoparallel, etc.
- $M \stackrel{\mathrm{e}}{\subset} \mathscr{P}(\mathscr{X}) \Longleftrightarrow M$ is an exponential family on \mathscr{X}; (e-family for short)
$\log p_{\theta}(x)=C(x)+\sum_{i} \theta^{i} F_{i}(x)-\psi(\theta)$
$\theta=\left(\theta^{i}\right):$ an e-affine chart
$\eta_{i}(p)=\mathrm{E}_{p}\left[F_{i}(X)\right]=\sum_{x} F_{i}(x) p(x)$
$\eta=\left(\eta_{i}\right)$: an m-affine chart
- $M \stackrel{\mathrm{~m}}{\subset} \mathscr{P}(\mathscr{X}) \Longleftrightarrow M$ is a mixture family on \mathscr{X}; (m-family for short)
$p_{\eta}(x)=C(x)+\sum_{i} \eta_{i} F^{i}(x)$
$\eta=\left(\eta_{i}\right)$: an m-affine chart
$\theta^{i}(p)=\sum_{x} F^{i}(x) \log p(x)$
$\theta=\left(\theta^{i}\right):$ an e-affine chart ${ }_{0}$

Chains of autoparallel submanifolds

Given a dually flat space $\left(S, g, \nabla, \nabla^{*}\right)$ with canonical divergence D,

- If $K \stackrel{\nabla}{\subset} S$ and $M \stackrel{\nabla \mid K}{\subset} S$, then
- $M \stackrel{\nabla}{\subset} S$,
- M is dually flat w.r.t. $\left(\left.g\right|_{M},\left.\nabla\right|_{M}, \pi_{M}\left(\nabla^{*}\right)\right)$ with canonical divergence $\left.D\right|_{M \times M}$.
- For simplicity, we write this implication as

$$
M \stackrel{\nabla}{\subset} K \stackrel{\nabla}{\subset} S \Longrightarrow \quad M \stackrel{\nabla}{\subset} S \text { and } M \text { is dually flat } \quad \begin{aligned}
& \text { with canonical divergence } D .
\end{aligned}
$$

Note: the canonical divergence determines the dually flat structure.

- Similarly,

$$
M \stackrel{\nabla^{*}}{\subset} K \stackrel{\nabla^{*}}{\subset} S \Longrightarrow M \stackrel{\nabla^{*}}{\subset} S \text { and } M \text { is dually flat }
$$

- On the other hand,
either $M \stackrel{\nabla^{*}}{\subset} K \stackrel{\nabla}{\subset} S$ or $M \stackrel{\nabla}{\subset} K \stackrel{\nabla^{*}}{\subset} S$
$\Longrightarrow \operatorname{not} M \stackrel{\nabla}{\subset} S$ nor $M \stackrel{\nabla^{*}}{\subset} S$ in general, but M is still dually flat with caponical divergence D.
- $M \stackrel{\mathrm{e}}{\subset} K \stackrel{\mathrm{e}}{\subset} \mathscr{P}(\mathscr{X}) \Longrightarrow M \stackrel{\mathrm{e}}{\subset} \mathscr{P}(\mathscr{X})(M$ is an e-family $)$ and M is dually flat with canonical divergence D_{KL}.
- $M \stackrel{\mathrm{~m}}{\subset} K \stackrel{\mathrm{~m}}{\subset} \mathscr{P}(\mathscr{X}) \Longrightarrow M \stackrel{\mathrm{~m}}{\subset} \mathscr{P}(\mathscr{X})(M$ is an m-family $)$ and M is dually flat with canonical divergence D_{KL} 。
- \quad either $M \stackrel{\mathrm{~m}}{\subset} K \stackrel{\mathrm{e}}{\subset} \mathscr{P}(\mathscr{X})$ or $M \stackrel{\mathrm{e}}{\subset} K \stackrel{\mathrm{~m}}{\subset} \mathscr{P}(\mathscr{X})$
$\Longrightarrow \operatorname{not} M \stackrel{\mathrm{e}}{\subset} \mathscr{P}(\mathscr{X})$ nor $M \stackrel{\mathrm{~m}}{\subset} \mathscr{P}(\mathscr{X})$ in general,
but M is dually flat with canonical divergence D_{KL}.

Main theorem

Given a dually flat space $\left(S, g, \nabla, \nabla^{*}\right)$ with canonical divergence D and a submanifold $M \subset S$, the following conditions are equivalent.
(1) M is dually flat with canonical divergence D.
(2) $M \stackrel{\nabla^{*}}{\subset} \exists K \stackrel{\nabla}{\subset} S$.
(3) $M \stackrel{\nabla}{\subset} \exists K \stackrel{\nabla^{*}}{\subset} S$.
(4) $\exists K_{1} \stackrel{\nabla}{\subset} S$ and $\exists K_{2} \stackrel{\nabla^{*}}{\subset} S$ such that

$$
M=K_{1} \cap K_{2} \quad \text { and } \quad \forall p \in M, T_{p}\left(K_{1}\right)^{\perp} \perp T_{p}\left(K_{2}\right)^{\perp}
$$

(5) $\exists K_{1} \stackrel{\nabla}{\subset} S$ and $\exists K_{2} \stackrel{\nabla^{*}}{\subset} S$ such that

$$
M=K_{1} \cap K_{2} \quad \text { and } \quad \exists p \in M, T_{p}\left(K_{1}\right)^{\perp} \perp T_{p}\left(K_{2}\right)^{\perp}
$$

We show that
(1) M is dually flat with canonical divergence D.
implies
(2) $M \stackrel{\nabla^{*}}{\subset} \exists K \stackrel{\nabla}{\subset} S$.

- Let $m:=\operatorname{dim} M \leq n:=\operatorname{dim} S$.
- Since $\left(S, g, \nabla, \nabla^{*}\right)$ is dually flat, there exist
a ∇-affine chart $\sigma: S \rightarrow \mathbb{R}^{n \times 1}$ (column vectors) and
a ∇^{*}-affine chart $\zeta: S \rightarrow \mathbb{R}^{1 \times n}$ (row vectors) such that

$$
\forall p, q, r \in S
$$

$$
D(p \| q)+D(q \| r)-D(p \| r)=(\zeta(p)-\zeta(q))(\sigma(r)-\sigma(q))
$$

- Assume (1), so that there exists a pair of affine charts $\theta: M \rightarrow \mathbb{R}^{m \times 1}$ and $\eta: M \rightarrow \mathbb{R}^{1 \times m}$ satisfying
$\forall p, q, r \in M$

$$
D(p \| q)+D(q \| r)-D(p \| r)=(\eta(p)-\eta(q))(\theta(r)-\theta(q))
$$

$$
\text { Proof of }(1) \Longrightarrow(2), 2 / 5 \text { slides }
$$

- Fix a point $p_{0} \in M$ arbitrarily, and let

$$
V:=\operatorname{span}\left\{\sigma(p)-\sigma\left(p_{0}\right) \mid p \in M\right\} \subset \mathbb{R}^{n \times 1}
$$

and

$$
K:=\left\{p \in S \mid \sigma(p)-\sigma\left(p_{0}\right) \in V\right\} \subset S
$$

Note: the definitions of V and K do not depend on p_{0}.

- It is obvious that

$$
M \subset K \stackrel{\nabla}{\subset} S
$$

- Let $k:=\operatorname{dim} V=\operatorname{dim} K . \quad(m \leq k \leq n)$

Then there exists a matrix $F: n \times k$ such that $V=\operatorname{Im} F$.

- Define a ∇-affine chart $\rho: K \rightarrow \mathbb{R}^{k \times 1}$ (column vectors) of K by

$$
\forall p \in K, \quad \sigma(p)-\sigma\left(p_{0}\right)=F \rho(p)
$$

- Let $\xi: K \rightarrow \mathbb{R}^{1 \times k}$ (row vectors) be defined by

$$
\forall p \in K, \quad \xi(p)=\zeta(p) F
$$

$$
\text { Proof of }(1) \Longrightarrow(2), 3 / 5 \text { slides }
$$

- For $\forall p, q, r \in K$, we have

$$
\begin{aligned}
(\xi(p)-\xi(q))(\rho(r)-\rho(q)) & =(\zeta(p)-\zeta(q)) F(\rho(r)-\rho(q)) \\
& =(\zeta(p)-\zeta(q))(\sigma(r)-\sigma(q)) \\
& =D(p \| q)+D(q \| r)-D(p \| r),
\end{aligned}
$$

which implies that ξ is ∇^{*}-affine chart of K.

manifold	dimension	∇-chart (column vectors)	∇^{*}-chart (row vectors)
S	n	σ	ζ
K	k	ρ	ξ
M	m	θ	η

$$
\text { Proof of }(1) \Longrightarrow(2), 4 / 5 \text { slides }
$$

- Lemma:

$$
\begin{align*}
& \forall f \in V\left(\subset \mathbb{R}^{n \times 1}\right), \quad \exists a \in \mathbb{R}^{m \times 1}, \quad \forall p \in M \\
&\left(\zeta(p)-\zeta\left(p_{0}\right)\right) f=\left(\eta(p)-\eta\left(p_{0}\right)\right) a
\end{align*}
$$

\because It suffices to show (\sharp) in the case when $f=\sigma(q)-\sigma\left(p_{0}\right)$ for an arbitrary $q \in M$, since V is the linear span of such f^{\prime} 's. In this case, for $\forall p \in M$ we have

$$
\begin{aligned}
\left(\zeta(p)-\zeta\left(p_{0}\right)\right) f & =\left(\zeta(p)-\zeta\left(p_{0}\right)\right)\left(\sigma(q)-\sigma\left(p_{0}\right)\right) \\
& =D\left(p \| p_{0}\right)+D\left(p_{0} \| q\right)-D(p \| q) \\
& =\left(\eta(p)-\eta\left(p_{0}\right)\right)\left(\theta(q)-\theta\left(p_{0}\right)\right),
\end{aligned}
$$

which means that (\sharp) holds by setting $a:=\theta(q)-\theta\left(p_{0}\right)$.

- Since $V=\operatorname{Im} F$, the previous lemma implies the existence of a matrix $A: m \times k$ such that

$$
\begin{equation*}
\forall p \in M, \quad\left(\zeta(p)-\zeta\left(p_{0}\right)\right) F=\left(\eta(p)-\eta\left(p_{0}\right)\right) A \tag{b}
\end{equation*}
$$

Proof of $(1) \Longrightarrow(2), 5 / 5$ slides

- Since the LHS of (b) is $\left(\zeta(p)-\zeta\left(p_{0}\right)\right) F=\xi(p)-\xi\left(p_{0}\right)$, we have

$$
\begin{equation*}
\forall p \in M, \quad \xi(p)=\eta(p) A+b \tag{দ}
\end{equation*}
$$

where $b:=\xi\left(p_{0}\right)-\eta\left(p_{0}\right) A$.

- ((\square) means that $\xi(M)$ forms an affine subspace of the ξ-coordinate space \mathbb{R}^{k} and hence $M \stackrel{\nabla^{*}}{\subset} K$.

manifold	dimension	∇-chart (column vectors)	∇^{*}-chart (row vectors)
S	n	σ	ζ
K	k	ρ	ξ
M	m	θ	η

(2) $M \stackrel{\nabla^{*}}{\subset} \exists K \stackrel{\nabla}{\subset} S$.
$\Longrightarrow \quad(4) \exists K_{1} \stackrel{\nabla}{\subset} S$ and $\exists K_{2} \stackrel{\nabla}{ }_{\subset} \quad S$ such that

$$
M=K_{1} \cap K_{2} \quad \text { and } \quad \forall p \in M, T_{p}\left(K_{1}\right)^{\perp} \perp T_{p}\left(K_{2}\right)^{\perp}
$$

- Assume that $M \stackrel{\nabla^{*}}{\subset} K \subset{ }_{C} \subset$ and fix a point $p_{0} \in M$ arbitrarily.

Let $\sigma: S \rightarrow \mathbb{R}^{n \times 1}$ and $\zeta: S \rightarrow \mathbb{R}^{1 \times n}$ be a pair of dual affine charts.

- Since $K \stackrel{\nabla}{\subset} S$, there exits a matrix $F: n \times k$ such that

$$
K=\left\{p \in S \mid \sigma(p)-\sigma\left(p_{0}\right) \in \operatorname{Im} F\right\} .
$$

Let $\xi: K \rightarrow \mathbb{R}^{1 \times k}$ be defined by $\xi(p)=\zeta(p) F$ for $\forall p \in K$.
Then ξ becomes a ∇^{*} chart of K.

- Since $M \stackrel{\nabla^{*}}{\subset} K$, there exists a linear subspace W of $\mathbb{R}^{1 \times k}$ such that

$$
\begin{aligned}
M & =\left\{p \in K \mid \xi(p)-\xi\left(p_{0}\right) \in W\right\} \\
& =\left\{p \in K \mid \zeta(p) F-\xi\left(p_{0}\right) \in W\right\}=K_{1} \cap K_{2}
\end{aligned}
$$

where $K_{1}:=K$ and $K_{2}:=\left\{p \in S \mid \zeta(p) F-\xi\left(p_{0}\right) \in W\right\}$.

- $K_{1} \stackrel{\nabla}{\subset} S$ and $K_{2} \stackrel{\nabla^{*}}{\subset} S$ are obvious, and

$$
\forall p \in M, T_{p}\left(K_{1}\right)^{\perp} \perp T_{p}\left(K_{2}\right)^{\perp}
$$

can be verified by some linear algebraic argument.

Let us observe that the set of stationary markov joint distributions forms a dually flat space which can be regarded as an example of our theorem.

- Let \mathscr{X} be an arbitrary finite set and let $\mathscr{X}^{n}=\underbrace{\mathscr{X} \times \cdots \times \mathscr{X}}_{n}$.
- $S:=\mathscr{P}\left(\mathscr{X}^{n}\right)$, the set of positive n-joint distributions.
- An n-joint distribution $p \in S$ is markov

$$
\begin{aligned}
& \Longleftrightarrow X_{1}-X_{2}-\cdots-X_{n} \text { is a Markov process } \\
& \\
& \text { for } X^{n}=\left(X_{1}, \cdots, X_{n}\right) \sim p . \\
& \Longleftrightarrow \exists u_{1}, \ldots, u_{n-1}: \mathscr{X}^{2} \rightarrow \mathbb{R}^{+}, \quad \forall x^{n}=\left(x_{1}, \ldots, x_{n}\right) \in \mathscr{X}^{n}, \\
& p\left(x^{n}\right)=\prod_{t=1}^{n-1} u_{t}\left(x_{t}, x_{t+1}\right) . \\
& \Longleftrightarrow \exists \pi \in \mathscr{P}(\mathscr{X}), \exists w_{1}, \ldots, w_{n-1} \in \mathscr{P}(\mathscr{X} \mid \mathscr{X}), \\
& \forall x^{n}=\left(x_{1}, \ldots, x_{n}\right) \in \mathscr{X}^{n}, \\
& p\left(x^{n}\right)=\pi\left(x_{1}\right) \prod_{t=1}^{n-1} w_{t}\left(x_{t+1} \mid x_{t}\right) .
\end{aligned}
$$

- $K_{\text {mar }}:=\{p \in S \mid p$ is markov $\}$.
- $K_{\text {mar }}$ is an exponential family.
(\because the Hammersley-Clifford theorem)
- For $\mathscr{X}=\{0,1, \ldots, m-1\}$,

$$
N:=\operatorname{dim} K_{\mathrm{mar}}=n(m-1)+(n-1)(m-1)^{2}
$$

and $K_{\text {mar }}=\left\{p_{\rho} \mid \rho=\left(\rho^{i t} ; \rho^{i j t}\right) \in \mathbb{R}^{N}\right\}$ where

$$
\begin{aligned}
\log p_{\rho}\left(x^{n}\right)= & \sum_{t=1}^{n} \sum_{i=1}^{m-1} \rho^{i t} \delta_{i}\left(x_{t}\right) \\
& +\sum_{t=1}^{n-1} \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} \rho^{i j t} \delta_{i j}\left(x_{t}, x_{t+1}\right)-\psi(\rho)
\end{aligned}
$$

- For an n-joint distribution $p \in S=\mathscr{P}\left(\mathscr{X}^{n}\right)$, its marginal distributions $p_{t}^{(k)} \in \mathscr{P}\left(\mathscr{X}^{k}\right)$ for $k \in\{1, \ldots, n-1\}$ and $t \in\{1, \ldots, n-$ $k+1\}$ are defined by

$$
\begin{aligned}
p_{1}^{(n-1)}\left(x^{n-1}\right) & =\sum_{x^{\prime}} p\left(x^{n-1}, x^{\prime}\right) \\
p_{2}^{(n-1)}\left(x^{n-1}\right) & =\sum_{x^{\prime}} p\left(x^{\prime}, x^{n-1}\right), \\
p_{1}^{(n-2)}\left(x^{n-2}\right) & =\sum_{x^{\prime}} p_{1}^{(n-1)}\left(x^{n-2}, x^{\prime}\right), \\
p_{2}^{(n-2)}\left(x^{n-2}\right) & =\sum_{x^{\prime}} p_{1}^{(n-1)}\left(x^{\prime}, x^{n-2}\right)=\sum_{x^{\prime}} p_{2}^{(n-1)}\left(x^{n-2}, x^{\prime}\right), \\
p_{3}^{(n-2)}\left(x^{n-2}\right) & =\sum_{x^{\prime}} p_{2}^{(n-1)}\left(x^{\prime}, x^{n-2}\right)
\end{aligned}
$$

- An n-joint distribution $p \in S$ is stationary

$$
\stackrel{\text { def }}{\Longleftrightarrow} p_{1}^{(n-1)}=p_{2}^{(n-1)}
$$

$\Longleftrightarrow \forall k \in\{1, \ldots, n-1\}, p_{t}^{(k)}$ does not depend on t.

- $K_{\text {sta }}:=\{p \in S \mid p$ is stationary $\}$.
- $K_{\text {sta }}$ is a mixture family.

```
Stationary markov joint distributions
```

- $\quad M:=K_{\mathrm{mar}} \cap K_{\mathrm{sta}}$.
- $\quad p \in M \Longleftrightarrow \exists w \in \mathscr{P}(\mathscr{X} \mid \mathscr{X})$ s.t. $\forall x^{n} \in \mathscr{X}^{n}$,

$$
p\left(x^{n}\right)=p_{w}^{(n)}\left(x^{n}\right):=\pi_{w}\left(x_{1}\right) \prod_{t=1}^{n-1} w\left(x_{t+1} \mid x_{t}\right)
$$

where π_{w} is the stationary distribution of w :

$$
\pi_{w}(x)=\sum_{x^{\prime}} w\left(x \mid x^{\prime}\right) \pi_{w}\left(x^{\prime}\right)
$$

- It does not hold that $\forall p \in M, T_{p}\left(K_{\mathrm{mar}}\right)^{\perp} \perp T_{p}\left(K_{\text {sta }}\right)^{\perp}$.
- Let

$$
K_{\mathrm{sta}, 2}:=\left\{p \in S \mid p_{t}^{(2)} \text { does not depend on } t\right\} \quad\left(\supset K_{\mathrm{sta}}\right)
$$

Then

- $K_{\mathrm{sta}, 2}$ is a mixture family.
- $M=K_{\mathrm{mar}} \cap K_{\mathrm{sta}, 2}$.
$-\forall p \in M, T_{p}\left(K_{\mathrm{mar}}\right)^{\perp} \perp T_{p}\left(K_{\mathrm{sta}, 2}\right)^{\perp}$.
- Therefore, we have
- M is dually flat with canonical divergence D_{KL}.
- $M \stackrel{\mathrm{~m}}{\subset} K_{\text {mar }}$ and $M \stackrel{\mathrm{e}}{\subset} K_{\text {sta }, 2}$.
- $D=\left.D_{\mathrm{KL}}\right|_{M \times M}$ is represented as

$$
D\left(p_{w_{1}}^{(n)} \| p_{w_{2}}^{(n)}\right)=D\left(\pi_{w_{1}} \| \pi_{w_{2}}\right)+(n-1) \sum_{x} \pi_{w_{1}}(x) D\left(w_{1}(\cdot \mid x) \| w_{2}(\cdot \mid x)\right)
$$

- M is not an e-family nor m-family.
- Recall that $K_{\text {mar }}=\left\{p_{\rho} \mid \rho \in \mathbb{R}^{N}\right\}$ with

$$
\begin{aligned}
\log p_{\rho}\left(x^{n}\right)= & \sum_{t=1}^{n} \sum_{i=1}^{m-1} \rho^{i t} \delta_{i}\left(x_{t}\right) \\
& +\sum_{t=1}^{n-1} \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} \rho^{i j t} \delta_{i j}\left(x_{t}, x_{t+1}\right)-\psi(\rho)
\end{aligned}
$$

- There exists a subset $U \subset \mathbb{R}^{N}$ such that $M=\left\{p_{\rho} \mid \rho \in U\right\}$.
- A pair of dual affine charts of M is given by
- e-affine chart $\theta=\left(\theta^{i}, \theta^{i j}\right)$:

$$
\theta^{i}=\sum_{t=1}^{n} \rho^{i t}, \quad \theta^{i j}=\sum_{t=1}^{n-1} \rho^{i j t} \quad(\forall \rho \in U)
$$

- m-affine chart: $\eta=\left(\eta_{i}, \eta_{i j}\right)$:

$$
\eta_{i}(p)=E_{p}\left[\delta_{i}\left(X_{t}\right)\right], \quad \eta_{i j}(p)=E_{p}\left[\delta_{i j}\left(X_{t}, X_{t+1}\right)\right]
$$

(do not depend on t)

Thank you for listening!

