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Abstract

For a smooth compact manifold M, any weak Riemannian metric
on the space of smooth positive densities which is invariant under
the right action of the diffeomorphism group Diff (M) is of the form

Gµ(α, β) = C1(µ(M))

∫
M

α

µ

β

µ
µ+ C2(µ(M))

∫
M
α ·
∫
M
β

for smooth functions C1,C2 of the total volume µ(M) =
∫
M µ.

In this talk the result is extended to:
(0) Geometry of the Fisher-Rao metric: geodesics and curvature.
(1) manifolds with boundary, for manifolds with corner.
(2) to tensor fields of the form Gµ(α1, α2, . . . , αk) for any k which
are invariant under Diff (M).



The Fisher–Rao metric on the space Prob(M) of probability
densities is of importance in the field of information geometry.
Restricted to finite-dimensional submanifolds of Prob(M), so-called
statistical manifolds, it is called Fisher’s information metric
[Amari: Differential-geometrical methods in statistics, 1985]. The
Fisher–Rao metric is invariant under the action of the
diffeomorphism group. A uniqueness result was established
[Čencov: Statistical decision rules and optimal inference, 1982, p.
156] for Fisher’s information metric on finite sample spaces and
[Ay, Jost, Le, Schwachhöfer, 2014] extended it to infinite sample
spaces.

The Fisher–Rao metric on the infinite-dimensional manifold of all
positive probability densities was studied in [Friedrich: Die
Fisher-Information und symplektische Strukturen, 1991], including
the computation of its curvature.



The space of densities

Let Mm be a smooth manifold. Let (Uα, uα) be a smooth atlas for
it. The volume bundle (Vol(M), πM ,M) of M is the 1-dimensional
vector bundle (line bundle) which is given by the following cocycle
of transition functions:

ψαβ : Uαβ = Uα ∩ Uβ → R \ {0} = GL(1,R),

ψαβ(x) = | det d(uβ ◦ u−1
α )(uα(x))| =

1

| det d(uα ◦ u−1
β )(uβ(x))|

.

Vol(M) is a trivial line bundle over M. But there is no natural
trivialization. There is a natural order on each fiber. Since Vol(M)
is a natural bundle of order 1 on M, there is a natural action of the
group Diff(M) on Vol(M), given by

Vol(M)

��

| det(Tϕ−1)| ◦ϕ// Vol(M)

��
M

ϕ // M

.



If M is orientable, then Vol(M) = ΛmT ∗M. If M is not orientable,
let M̃ be the orientable double cover of M with its
deck-transformation τ : M̃ → M̃. Then Γ(Vol(M)) is isomorphic to
the space {ω ∈ Ωm(M̃) : τ∗ω = −ω}. These are the ‘formes
impaires’ of de Rham. See [M 2008, 13.1] for this.

Sections of the line bundle Vol(M) are called densities. The space
Γ(Vol(M)) of all smooth sections is a Fréchet space in its natural
topology; see [Kriegl-M, 1997]. For each section α of Vol(M) of
compact support the integral

∫
M α is invariantly defined as follows:

Let (Uα, uα) be an atlas on M with associated trivialization
ψα : Vol(M)|Uα → R, and let fα be a partition of unity with
supp(fα) ⊂ Uα. Then we put∫

M
µ =

∑
α

∫
Uα

fαµ :=
∑
α

∫
uα(Uα)

fα(u−1
α (y)).ψα(µ(u−1

α (y))) dy .

The integral is independent of the choice of the atlas and the
partition of unity.



The Fisher–Rao metric

Let Mm be a smooth compact manifold without boundary. Let
Dens+(M) be the space of smooth positive densities on M, i.e.,
Dens+(M) = {µ ∈ Γ(Vol(M)) : µ(x) > 0 ∀x ∈ M}.
Let Prob(M) be the subspace of positive densities with integral 1.
For µ ∈ Dens+(M) we have Tµ Dens+(M) = Γ(Vol(M)) and for
µ ∈ Prob(M) we have
Tµ Prob(M) = {α ∈ Γ(Vol(M)) :

∫
M α = 0}.

The Fisher–Rao metric on Prob(M) is defined as:

G FR
µ (α, β) =

∫
M

α

µ

β

µ
µ.

It is invariant for the action of Diff(M) on Prob(M):(
(ϕ∗)∗G FR

)
µ

(α, β) = G FR
ϕ∗µ(ϕ∗α,ϕ∗β) =

=

∫
M

(α
µ
◦ ϕ
)(β

µ
◦ ϕ
)
ϕ∗µ =

∫
M

α

µ

β

µ
µ .



Theorem [BBM, 2016]

Let M be a compact manifold without boundary of dimension ≥ 2.
Let G be a smooth (equivalently, bounded) bilinear form on
Dens+(M) which is invariant under the action of Diff(M). Then

Gµ(α, β) = C1(µ(M))

∫
M

α

µ

β

µ
µ+ C2(µ(M))

∫
M
α ·
∫
M
β

for smooth functions C1,C2 of the total volume µ(M).

To see that this theorem implies the uniqueness of the Fisher–Rao
metric, note that if G is a Diff(M)-invariant Riemannian metric on
Prob(M), then we can equivariantly extend it to Dens+(M) via

Gµ(α, β) = G µ
µ(M)

(
α−

(∫
M
α
) µ

µ(M)
, β −

(∫
M
β
) µ

µ(M)

)
.



Relations to right-invariant metrics on diffeom. groups

Let µ0 ∈ Prob(M) be a fixed smooth probability density. In
[Khesin, Lenells, Misiolek, Preston, 2013] it has been shown, that
the degenerate, Ḣ1-metric 1

2

∫
M divµ0(X ). divµ0(X ).µ0 on X(M) is

invariant under the adjoint action of Diff(M, µ0). Thus the
induced degenerate right invariant metric on Diff(M) descends to
a metric on Prob(M) ∼= Diff(M, µ0)\Diff(M) via

Diff(M) 3 ϕ 7→ ϕ∗µ0 ∈ Prob(M)

which is invariant under the right action of Diff(M). This is the
Fisher–Rao metric on Prob(M). In [Modin, 2014], the Ḣ1-metric
was extended to a non-degenerate metric on Diff(M), also
descending to the Fisher–Rao metric.



Corollary. Let dim(M) ≥ 2. If a weak right-invariant (possibly
degenerate) Riemannian metric G̃ on Diff(M) descends to a metric
G on Prob(M) via the right action, i.e., the mapping ϕ 7→ ϕ∗µ0

from (Diff(M), G̃ ) to (Prob(M),G ) is a Riemannian submersion,
then G has to be a multiple of the Fisher–Rao metric.

Note that any right invariant metric G̃ on Diff(M) descends to a
metric on Prob(M) via ϕ 7→ ϕ∗µ0; but this is not
Diff(M)-invariant in general.



Invariant metrics on Dens+(S1).

Dens+(S1) = Ω1
+(S1), and Dens+(S1) is Diff(S1)-equivariantly

isomorphic to the space of all Riemannian metrics on S1 via
Φ = ( )2 : Dens+(S1)→ Met(S1), Φ(fdθ) = f 2dθ2.
On Met(S1) there are many Diff(S1)-invariant metrics; see [Bauer,
Harms, M, 2013]. For example Sobolev-type metrics. Write
g ∈ Met(S1) in the form g = g̃dθ2 and h = h̃dθ2, k = k̃dθ2 with
g̃ , h̃, k̃ ∈ C∞(S1). The following metrics are Diff(S1)-invariant:

G l
g (h, k) =

∫
S1

h̃

g̃
. (1 + ∆g )n

(
k̃

g̃

)√
g̃ dθ ;

here ∆g is the Laplacian on S1 with respect to the metric g . The
pullback by Φ yields a Diff(S1)-invariant metric on Dens+(M):

Gµ(α, β) = 4

∫
S1

α

µ
.
(

1 + ∆Φ(µ)
)n (β

µ

)
µ .

For n = 0 this is 4 times the Fisher–Rao metric. For n ≥ 1 we get
different Diff(S1)-invariant metrics on Dens+(M) and on Prob(S1).



Main Theorem

Let M be a compact manifold, possibly with corners, of dimension
≥ 2. Let G be a smooth (equivalently, bounded)

(0
n

)
-tensor field

on Dens+(M) which is invariant under the action of Diff(M). If M
is not orientable or if n ≤ dim(M) = m, then

Gµ(α1, . . . , αn) = C0(µ(M))

∫
M

α1

µ
. . .

αn

µ
µ

+
n∑

i=1

Ci (µ(M))

∫
M
αi ·

∫
M

α1

µ
. . .

α̂i

µ
. . .

αn

µ
µ

+
n∑
i<j

Cij(µ(M))

∫
M

αi

µ

αj

µ
µ ·
∫
M

α1

µ
. . .

α̂i

µ
. . .

α̂i

µ
. . .

αn

µ
µ

+ . . .

+ C12...n(µ(M))

∫
M

α1

µ
µ ·
∫
M

α2

µ
µ · · · · ·

∫
M

αn

µ
µ·

for some smooth functions C0, . . . of the total volume µ(M).



Main Theorem, continued

If M is orientable and n > dim(M) = m, then each integral over
more than m functions αi/µ has to be replaced by the following
expression which we write only for the first term:

C0(µ(M))

∫
M

α1

µ
. . .

αn

µ
µ+

+
∑

CK
0 (µ(M))

∫
αk1

µ
. . .

αkn−m

µ
d
(αkn−m+1

µ

)
∧ · · · ∧ d

(αkn

µ

)
where K = {kn−m+1, . . . , kn} runs through all subsets of
{1, . . . , n} containing exactly m elements.



Moser’s theorem for manifolds with corners
[BMPR16]

Let M be a compact smooth manifold with corners, possibly
non-orientable. Let µ0 and µ1 be two smooth positive densities in
Dens+(M) with

∫
M µ0 =

∫
M µ1. Then there exists a

diffeomorphism ϕ : M → M such that µ1 = ϕ∗µ0. If and only if
µ0(x) = µ1(x) for each corner x ∈ ∂≥2M of codimension ≥ 2,
then ϕ can be chosen to be the identity on ∂M.

This result is highly desirable even for M a simplex. The proof is
essentially contained in [Banyaga1974], who proved it for manifolds
with boundary.



Geometry of the Fisher-Rao metric

Gµ(α, β) = C1(µ(M))

∫
M

α

µ

β

µ
µ+ C2(µ(M))

∫
M
α ·
∫
M
β

This metric will be studied in different representations.

Dens+(M)
R // C∞(M,R>0)

Φ // R>0 × S ∩ C∞>0

W×Id// (W−,W+)× S ∩ C∞>0 .

We fix µ0 ∈ Prob(M) and consider the mapping

R : Dens+(M)→ C∞(M,R>0) , R(µ) = f =

√
µ

µ0
.

The map R is a diffeomorphism and we will denote the induced
metric by G̃ =

(
R−1

)∗
G ; it is given by the formula

G̃f (h, k) = 4C1(‖f ‖2)〈h, k〉+ 4C2(‖f ‖2)〈f , h〉〈f , k〉 ,

and this formula makes sense for f ∈ C∞(M,R) \ {0}.
The map R is inspired by [B. Khesin, J. Lenells, G. Misiolek, S. C.

Preston: Geometry of diffeomorphism groups, complete integrability and

geometric statistics. Geom. Funct. Anal., 23(1):334-366, 2013.]



Remark on R−1

R−1 : C∞(M,R)→ Γ≥0(Vol(M)), f 7→ f 2µ0

makes sense on the whole space C∞(M,R) and its image is
stratified (loosely speaking) according to the rank of TR−1. The
image looks somewhat like the orbit space of a discrete reflection
group. Geodesics are mapped to curves which are geodesics in the
interior Γ>0(Vol(M)), and they are reflected following Snell’s law
at some hyperplanes in the boundary.



Polar coordinates

on the pre-Hilbert space (C∞(M,R), 〈 , 〉L2(µ0)). Let

S = {ϕ ∈ L2(M,R) :
∫
M ϕ2µ0 = 1} denote the L2-sphere. Then

Φ : C∞(M,R)\{0} → R>0×(S∩C∞) , Φ(f ) = (r , ϕ) =

(
‖f ‖, f

‖f ‖

)
,

is a diffeomorphism. We set Ḡ =
(
Φ−1

)∗
G̃ ; the metric has the

expression
Ḡr ,ϕ = g1(r)〈dϕ, dϕ〉+ g2(r)dr 2 ,

with g1(r) = 4C1(r 2)r 2 and g2(r) = 4
(
C1(r 2) + C2(r 2)r 2

)
. Finally

we change the coordinate r diffeomorphically to

s = W (r) = 2

∫ r

1

√
g2(ρ) dρ .

Then, defining a(s) = 4C1(r(s)2)r(s)2, we have

Ḡs,ϕ = a(s)〈dϕ, dϕ〉+ ds2 .



Let W− = limr→0+ W (r) and W+ = limr→∞W (r). Then
W : R>0 → (W−,W+) is a diffeomorphism.

This completes the first row in Fig. 1.

Dens+(M)
R //

��

C∞(M,R>0)
Φ //

��

R>0×S ∩ C∞>0

W×Id//

��

(W−,W+)×S ∩ C∞>0

��
Dens(M)\{0}

R //

��

C0(M,R)\{0}
Φ //

��

R>0×S ∩ C0
W×Id //

��

R×S ∩ C0

��
Γ
L1 (Vol(M))\{0}

R // L2(M,R)\{0}
Φ // R>0×S

W×Id // R×S

Figure: Representations of Dens+(M) and its completions. In the second and third rows we assume that
(W−,W+) = (−∞,+∞) and we note that R is a diffeomorphism only in the first row.

Geodesic equation:

∇S
∂tϕt = ∂t (log g1(r))ϕt

rtt =
C 2

0

2

g ′1(r)

g1(r)2g2(r)
− 1

2
∂t (log g2(r)) rt



Since Ḡ induces the canonical metric on (W−,W+), a necessary
condition for Ḡ to be complete is (W−,W+) = (−∞,+∞).
Rewritten in terms of the functions C1, C2 this becomes

W+ =∞⇔
(∫ ∞

1
r−1/2

√
C1(r) dr =∞ or

∫ ∞
1

√
C2(r) dr =∞

)
,

and similarly for W− = −∞, with the limits of the integration
being 0 and 1.



Relation to hypersurfaces of revolution in the (pre-)
Hilbert space

We consider the metric on (W−,W+)× S ∩ C∞ in the form
G̃r ,ϕ = a(s)〈dϕ, dϕ〉+ ds2 where a(s) = 4C1(r(s)2)r(s)2. Then
we consider the isometric embedding (remember 〈ϕ, dϕ〉 = 0 on
S ∩ C∞)

Ψ : ((W−,W+)× S ∩ C∞, G̃ )→
(
R× C∞(M,R), du2 + 〈df , df 〉

)
,

Ψ(s, ϕ) =
(∫ s

0

√
1− a′(σ)2

4a(σ)
dσ ,

√
a(s)ϕ

)
,

which defined and smooth only on the open subset

R := {(s, ϕ) ∈ (W−,W+)× S ∩ C∞ : a′(s)2 < 4a(s)}.
Fix some ϕ0 ∈ S ∩ C∞ and consider the generating curve

s 7→
(∫ s

0

√
1− a′(σ)2

4a(σ)
dσ ,

√
a(s)

)
∈ R2 .

Then s is an arc-length parameterization of this curve!



Given any arc-length parameterized curve I 3 s 7→ (c1(s), c2(s)) in
R2 and its generated hypersurface of rotation

{(c1(s), c2(s)ϕ) : s ∈ I , ϕ ∈ S ∩ C∞} ⊂ R× C∞(M,R) ,

the induced metric in the (s, ϕ)-parameterization is
ds2 + c2(s)2〈dϕ, dϕ〉.

This suggests that the moduli space of hypersurfaces of revolution
is naturally embedded in the moduli space of all metrics of the
form (b).



Theorem

If (W−,W+) = (−∞,+∞), then any two points (s0, ϕ0) and
(s1, ϕ1) in R× S can be joined by a minimal geodesic. If ϕ0 and
ϕ1 lie in S ∩ C∞, then the minimal geodesic lies in R× S ∩ C∞.

Proof. If ϕ0 and ϕ1 are linearly independent, we consider the
2-space V = V (ϕ0, ϕ1) spanned by ϕ0 and ϕ1 in L2. Then
R× V ∩ S is totally geodesic since it is the fixed point set of the
isometry (s, ϕ) 7→ (s, sV (ϕ)) where sV is the orthogonal reflection
at V . Thus there is exists a minimizing geodesic between (s0, ϕ0)
and (s1, ϕ1) in the complete 3-dimensional Riemannian
submanifold R× V ∩ S . This geodesic is also length-minimizing in
the strong Hilbert manifold R× S by the following arguments:



Given any smooth curve c = (s, ϕ) : [0, 1]→ R× S between these
two points, there is a subdivision 0 = t0 < t1 < · · · < tN = 1 such
that the piecewise geodesic c1 which first runs along a geodesic
from c(t0) to c(t1), then to c(t2), . . . , and finally to c(tN), has
length Len(c1) ≤ Len(c). This piecewise geodesic now lies in the
totally geodesic (N + 2)-dimensional submanifold
R× V (ϕ(t0), . . . , ϕ(tN)) ∩ S . Thus there exists a geodesic c2

between the two points (s0, ϕ0) and s1, ϕ1 which is length
minimizing in this (N + 2)-dimensional submanifold. Therefore
Len(c2) ≤ Len(c1) ≤ Len(c). Moreover, c2 = (s ◦ c2, ϕ ◦ c2) lies
in R× V (ϕ0, (ϕ ◦ c2)′(0)) ∩ S which also contains ϕ1, thus c2 lies
in R× V (ϕ0, ϕ1) ∩ S .

If ϕ0 = ϕ1, then R× {ϕ0} is a minimal geodesic. If ϕ0 = −ϕ0 we
choose a great circle between them which lies in a 2-space V and
proceed as above.



Covariant derivative

On R× S (we assume that (W−,W+) = R) with metric
Ḡ = ds2 + a(s)〈dϕ, dϕ〉 we consider smooth vector fields
f (s, ϕ)∂s + X (s, ϕ) where X (s, ) ∈ X(S) is a smooth vector field
on the Hilbert sphere S . We denote by ∇S the covariant derivative
on S and get

∇f ∂s+X (g∂s + Y ) =
(
f .gs + dg(X )− as

2
〈X ,Y 〉

)
∂s

+
as
2a

(fY + gX ) + fYs +∇S
XY

Curvature:

R(f ∂s + X , g∂s + Y )(h∂s + Z ) =

=
(ass

2
− a2

s

4a

)
〈gX − fY ,Z 〉∂s +RS(X ,Y )Z

−
(( as

2a

)
s

+
a2
s

4a2

)
h(gX − fY ) +

as
2a

(
〈X ,Z 〉Y − 〈Y ,Z 〉X

)
.



Sectional Curvature

Let us take X ,Y ∈ TϕS with 〈X ,Y 〉 = 0 and
〈X ,X 〉 = 〈Y ,Y 〉 = 1/a(s), then

Sec(s,ϕ)(span(X ,Y )) =
1

a
− as

2a2
,

Sec(s,ϕ)(span(∂s ,Y )) = −ass
2a

+
a2
s

4a2

are all the possible sectional curvatures.



Back to the Main Theorem

Let M be a compact manifold, possibly with corners, of dimension
≥ 2. Then the space of all Diff(M)-invariant purely covariant
tensor fields on Dens+(M) is generated as algebra with unit 1 over
the ring of of smooth functions f (µ(M)), f ∈ C∞(R,R) by the
following generators, allowing for permutations of the entries
αi ∈ Tµ Dens+(M):∫

M

α1

µ
. . .

αn

µ
µ for all n ∈ N>0, and by∫

α1

µ
. . .

αn−m
µ

d
(αn−m+1

µ

)
∧ · · · ∧ d

(αn

µ

)
for n > dim(M) and orientable M.



Manifolds with corners alias quadrantic (orthantic)
manifolds

For more information we refer to [DouadyHerault73], [Michor80],
[Melrose96], etc. Let Q = Qm = Rm

≥0 be the positive orthant or
quadrant. By Whitney’s extension theorem or Seeley’s theorem,
restriction C∞(Rm)→ C∞(Q) is a surjective continuous linear
mapping which admits a continuous linear section (extension
mapping); so C∞(Q) is a direct summand in C∞(Rm). A point
x ∈ Q is called a corner of codimension q > 0 if x lies in the
intersection of q distinct coordinate hyperplanes. Let ∂qQ denote
the set of all corners of codimension q.



A manifold with corners (recently also called a quadrantic
manifold) M is a smooth manifold modelled on open subsets of
Qm. We assume that it is connected and second countable; then it
is paracompact and for each open cover it admits a subordinated
smooth partition of unity. Any manifold with corners M is a
submanifold with corners of an open manifold M̃ of the same dim.
Restriction C∞(M̃)→ C∞(M) is a surjective continuous linear
map which admits a continuous linear section.Thus C∞(M) is a
topological direct summand in C∞(M̃) and the same holds for the
dual spaces: The space of distributions D′(M), which we identity
with C∞(M)′, is a direct summand in D′(M̃). It consists of all
distributions with support in M.

We do not assume that M is oriented, but eventually we will
assume that M is compact. Diffeomorphisms of M map the
boundary ∂M to itself and map the boundary ∂qM of corners of
codimension q to itself; ∂qM is a submanifold of codimension q in
M; in general ∂qM has finitely many connected components. We
shall consider ∂M as stratified into the connected components of
all ∂qM for q > 0.



Beginning of the proof of the Main Theorem

Fix a basic probability density µ0. By Moser’s theorem for
manifolds with corners, for each µ ∈ Dens+(M) there exists a
diffeomorphism ϕµ ∈ Diff(M) with ϕ∗µµ = µ(M)µ0 =: c .µ0 where
c = µ(M) =

∫
M µ > 0. Then(

(ϕ∗µ)∗G
)
µ

(α1, . . . , αn) = Gϕ∗µµ(ϕ∗µα1, . . . , ϕ
∗
µαn) =

= Gc.µ0(ϕ∗µα1, . . . , ϕ
∗
µαn) .

Thus it suffices to show that for any c > 0 we have

Gcµ0(α1, . . . , αn) = C0(c).

∫
M

α1

µ0
. . .

αn

µ0
µ0 + . . .

for some functions C0, . . . of the total volume c = µ(M). Since
c 7→ c .µ0 is a smooth curve in Dens+(M), the functions C0, . . .
are then smooth in c. All k-linear forms are still invariant under
the action of the group
Diff(M, cµ0) = Diff(M, µ0) = {ψ ∈ Diff(M) : ψ∗µ0 = µ0}.



The k-linear form(
Tµ0 Dens+(M)

)k 3 (α1, . . . , αn) 7→ Gcµ0

(α1

µ0
µ0, . . . ,

αn

µ0
µ0

)
can be viewed as a bounded k-linear form

C∞(M)k 3 (f1, . . . , fn) 7→ Gc(f1, . . . , fn) .

Using the Schwartz kernel theorem, Ǧc has a kernel Ĝc , which is a
distribution (generalized function) in

D′(Mn) ∼= D′(M) ⊗̄ . . . ⊗̄D′(M) =
(
C∞(M) ⊗̄ . . . ⊗̄C∞(M)

)′
∼= L(C∞(Mk),D′(Mn−k)) .

Note the defining relations

Gc(f1, . . . , fn) = 〈Ǧc(f1, . . . , fk), fk+1 ⊗ · · · ⊗ fn〉 = 〈Ĝc , f1 ⊗ · · · ⊗ fn〉 .

Ĝc is invariant under the diagonal action of Diff(M, µ0) on Mn.



The infinitesimal version of this invariance is:

0 = 〈LX diagĜc , f1 ⊗ · · · ⊗ fn〉 = −〈Ĝc ,LX diag(f1 ⊗ · · · ⊗ fn)〉

= −
n∑

i=1

〈Ĝc , f1 ⊗ · · · ⊗ LX fi ⊗ · · · ⊗ fn)〉

X diag = X × 0× . . .× 0 + 0× X × 0× . . .× 0 + . . . .

for all X ∈ X(M, µ0).

We will consider various (permuted versions) of the associated
bounded mappings

Ǧc : C∞(M)k →
(
C∞(M)n−k

)′
= D′(Mn−k) .

We shall use the fixed density µ0 ∈ Dens+(M) for the rest of this
section. So we identify distributions on Mk with the dual space
C∞(Mk)′ =: D′(Mk)



The Lie algebra of Diff(M , µ0)

For a fixed positive density µ0 on M, the Lie algebra of Diff(M, µ0)
which we will denote by X(M, ∂M, µ0), is the subalgebra of vector
fields which are tangent to each boundary stratum and which are
divergence free: 0 = divµ0(X ) := LXµ0

µ0
. These are exactly the

fields X such that for each good subset U (where each density can
be identified with an m-form) the form ι̂µ0(X ) is a closed form in

Ωm−1(U, ∂U), and 0 = divµ0(X ) := LXµ0
µ0

.

Denote by Xexact(M, ∂M, µ0) the set (not a vector space) of
‘exact’ divergence free vector fields X = ι̂−1

µ0
(dω), where

ω ∈ Ωm−2
c (U, ∂U) for a good subset U ⊂ M. They are

automatically tangent to each boundary stratum since
dω ∈ Ωm−1

c (U, ∂U).



Lemma If for f ∈ C∞(M) and a good set U ⊆ M we have
(LX f )|U = 0 for all X ∈ Xexact(M, ∂M, µ0), then f |U is constant.

Lemma If for a distribution A ∈ D′(M) = C∞(M)′ and a
connected open set U ⊆ M we have LXA|U = 0 for all
X ∈ Xexact(M, ∂M, µ0), then A|U = Cµ0|U for some constant C ,
meaning 〈A, f 〉 = C

∫
M f µ0 for all f ∈ C∞c (U).

This lemma proves the theorem for the case n = 1.

Lemma Each operator

Ǧc : C∞(M)→ C∞(Mn−1)′

fi 7→
(
(f1, . . . f̂i . . . , fn) 7→ Gc(f1, . . . , fn)

)
has the following property: If for f ∈ C∞(M) and a connected
open U ⊆ M the restriction f |U is constant, then
LX diag(Ǧc(f ))|Un−1 = 0 for each exact vector field
X ∈ Xexact(M, ∂M, µ0).



Lemma Let Ĝ be an invariant distribution in D′(Mn). Then for
each 1 ≤ i ≤ n there exists an invariant distribution
Ĝi ∈ D′(Mn−1) such that the distribution

(f1, . . . , fn) 7→ Ĝ (f1, . . . , fn)− Ĝi (f1, . . . f̂i . . . , fn) ·
∫
M

fiµ0

has support in the set

Di (M) = {(x1, . . . , xn) : xi = xj for some j 6= i} .

Lemma There exists a constant C = C (c) such that the
distribution Ĝc − Cµ0

⊗n is supported on the union of all partial
diagonals

D := {(x1, . . . , xn) ∈ Mn : for at least one pair i 6= j

we have equality: xi = xj} .



Lemma Let Ĝ ∈ D′(Mn) be a Diff(M, µ0)-invariant distribution,
supported on the full diagonal
∆(M) = {(x1, . . . , xn) ∈ Mn : x1 = · · · = xn} ⊂ Mn. If
n ≤ dim(M) or if M is not orientable, there exist some constant C
such that G (f1, . . . , fn) = C

∫
M f1 . . . fnµ0.

If n > dim(M) and if M is orientable, then there exist constants
such that

C0

∫
M

α1

µ
. . .

αn

µ
µ+

+
∑

CK
0

∫
αk1

µ
. . .

αkn−m

µ
d
(αkn−m+1

µ

)
∧ · · · ∧ d

(αkn

µ

)
where K = {kn−m+1, . . . , kn} runs through all subsets of
{1, . . . , n} containing exactly m elements.



Beginning of the proof of the lemma:

Let (U, u) be an oriented chart on M, diffeomorphic to Qm
p with

coordinates u1 ≥ 0, . . . , up ≥ 0, up+1, . . . , um, such that
µ0|U = du1 ∧ · · · ∧ dum. The distribution Ĝ |U ∈ D ′(Un) has
support contained in the full diagonal
∆(U) = {(x , . . . , x) ∈ Un : x ∈ U} and is of finite order k since
M is compact. By Thm. 2.3.5 of Hörmander 1983, the
corresponding multilinear form G can be written as

G (f1, . . . , fn) =
∑

|α1|+...+|αn−1|≤k

〈
Aα1,...,αn−1 , ∂

α1f1 . . . ∂
αn−1fn−1.fn

〉
,

with multi-indices αj = (αj ,1, . . . , αj ,m) and unique distributions
Aα1,...,αn−1 ∈ D ′(U) of order k − |α1| − . . .− |αn−1|.



End of the proof of the Main Theorem

Let Ĝ be an invariant distribution in D′(Mn) and let k < n/2. Let
{1, . . . , n} = {i1, . . . , ik} t {j1, . . . , jn−k} be a partition into a
disjoint union.

Without loss, let {i1, . . . , ik} = {1, . . . , k}. Let (x1, . . . , xn) ∈ Mn

be such that no xi for 1 ≤ i ≤ k equals any of the xj with k < j .
Choose open neighborhoods Ux` of x` in M for all ` such that each
Uxi with i ≤ k is disjoint from any Uxj with k < j . For smooth
functions f` with support in Ux` for all `, we have that for i ≤ k all

functions fi vanish on
⋂k

j=1(M \ Uxj ), thus

LX diag(Ǧ (f1, . . . , fk))|
(⋂k

j=1(M \ Uxj )
)n−k

= 0 for all
X ∈ Xdiag(M, ∂M, µ0).



For k < j we have supp(fj) ⊂ Uxj ⊂
⋂k

i=1(M \ Uxi ). Consider
f1, . . . , fk as fixed. Using induction on n and replacing M by the
submanifold (non-compact!)

⋂k
i=1(M \ Uxi ) we may assume that

the main theorem is already true for

Ǧc(f1, . . . , fk)|
( k⋂
j=1

(M \ Uxj )
)n−k

so that

Ǧc(f1, . . . , fk)(fk+1, . . . , fn) = C0(f1, . . . , fk)

∫
fk+1 . . . fnµ0

+
n∑

i=k+1

Ci (f1, . . . , fk)

∫
M
αi ·

∫
M

fk+1 . . . f̂i . . . fn µ0

+
n∑

k<i<j

Cij(f1, . . . , fk)

∫
M

fi fj µ0 ·
∫
M

fk+1 . . . f̂i . . . f̂j . . . fn µ

+ . . .

+ C12...n(f1, . . . , fk)

∫
M

fk+1 µ0 · · · · ·
∫
M

fn µ·



Now all the expressions C (f1, . . . , fk) are again invariant, and we
can subject it also to the induction hypothesis. All the resulting
multilinear operators are defined on the whole of M. If we
substract them from the original Ĝc , the resulting distribution has
support in the set of all (x1, . . . , xn) ∈ Mn such that xik = xj`(k)

for
an injective mapping ` : {1, . . . , k} → {1, . . . , n − k}.

Finally we end up with a distribution with support on the full
diagonal {(x , . . . , x) : x ∈ M} ⊂ Mn whose form is determined by
the last lemma.



Thank you for listening.


