
Geometry of affine immersions and construction of
geometric divergences

Hiroshi Matsuzoe
Nagoya Institute of Technology

Information Geometry And Its Applications IV
In honor of Professor Amari’s 80th birthday

1. Affine immersions
2. Statistical manifolds and generalized conformal structures
3. Deformed exponential families
4. Geometric divergences and α-divergences
Appendixes
5. Generalization of Legendre transformation
6. Quantum analogue of affine differential geometry



1 Affine immersions
1.1 Affine immersions

f : M → Rn+1: an immersion
ξ: a local vector field along f

� �
Definition 1.1
{f, ξ} : M → Rn+1 is an affine immersion

def⇐⇒ For an arbitrary point p ∈ M ,

Tf(p)R
n+1 = f∗(TpM) ⊕R{ξp}

ξ: a transversal vector field
� �

f̃ = Af + b

ξ̃ = Aξ
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1 Affine immersions
1.1 Affine immersions

f : M → Rn+1: an immersion
ξ: a local vector field along f

� �
Definition 1.1
{f, ξ} : M → Rn+1 is an affine immersion

def⇐⇒ For an arbitrary point p ∈ M ,

Tf(p)R
n+1 = f∗(TpM) ⊕R{ξp}

ξ: a transversal vector field
� �
D: the standard flat affine connection on Rn+1

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ,

DXξ = −f∗(SX) + τ (X)ξ.

� �

{f, ξ}, {f̃ , ξ̃} : affine immersions

∇ = ∇̃, h = h̃, S = S̃, τ = τ̃

⇐⇒ {f, ξ}, {f̃ , ξ̃} are affinely congruent.
� �
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1 Affine immersions
1.1 Affine immersions

f : M → Rn+1: an immersion
ξ: a local vector field along f

� �
Definition 1.1
{f, ξ} : M → Rn+1 is an affine immersion

def⇐⇒ For an arbitrary point p ∈ M ,

Tf(p)R
n+1 = f∗(TpM) ⊕R{ξp}

ξ: a transversal vector field
� �
D: the standard flat affine connection on Rn+1

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ,

DXξ = −f∗(SX) + τ (X)ξ.

∇ : the induced connection
h : the affine fundamental form
S : the affine shape operator
τ : the transversal connection form
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1.2 Equiaffine structures and statistical manifolds

1.2 Equiaffine structures and statistical manifolds

D: the standard flat affine connection on Rn+1

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ,

DXξ = −f∗(SX) + τ (X)ξ.

� �

f : non-degenerate
def⇐⇒ h : non-degenerate

{f, ξ} : equiaffine
def⇐⇒ τ = 0

� �� �

ω : the induced volume element (n-form) with respect to {f, ξ}
def⇐⇒ ω(X1, . . . , Xn) := det(f∗X1, . . . , f∗Xn, ξ),

where “det” is the standard volume element on Rn+1.
� �� �

∇, τ, ω : induced objects from {f, ξ}
=⇒ (∇Y ω)(X1, . . . , Xn) = τ (Y )ω(X1, . . . , Xn)

� �
τ = 0 ⇐⇒ ω is parallel with respect to ∇.

（ω: a uniform distribution）
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1.2 Equiaffine structures and statistical manifolds

� �
Proposition 1.2
{f, ξ} : non-degenerate, =⇒ (M,∇, h) is a statistical manifold,

equiaffine 1–conformally flat.
� �� �
Proposition 1.3
(M,∇, h) : a simply connected statistical manifold

1-conformally flat

=⇒ There exists {f, ξ} which realizes (M,∇, h) in Rn+1.
� �
Fundamental structural equations for affine immersions

Gauss: R(X,Y )Z = h(Y, Z)SX − h(X,Z)SY

Codazzi: (∇Xh)(Y, Z) + τ (X)h(Y, Z)

= (∇Y h)(X,Z) + τ (Y )h(X,Z)

(∇XS)(Y ) − τ (X)SY = (∇Y S)(X) − τ (Y )SX

Ricci: h(X,SY ) − h(Y, SX) = (∇Xτ )(Y ) − (∇Y τ )(X)

� �

f : non-degenerate
def⇐⇒ h : non-degenerate

{f, ξ} : equiaffine
def⇐⇒ τ = 0

� �
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2 Statistical manifolds
M : a manifold (an open domain in Rn)
h : a (semi-) Riemannian metric on M
∇ : an affine connection on M

� �

Definition 2.1 (Kurose)
We say that the triplet (M,∇, h) is a statistical manifold

def⇐⇒ (∇Xh)(Y, Z) = (∇Y h)(X,Z).
� �
C(X,Y, Z) := (∇Xh)(Y, Z), the cubic form,

the Amari-Chentsov tensor field
� �
Definition 2.2
∇∗: the dual connection of ∇ with respect to h

def⇐⇒ Xh(Y, Z) = h(∇∗
XY, Z) + h(Y,∇XZ).

� �
(M,∇∗, h): the dual statistical manifold of (M,∇, h).
� �

Remark 2.3 (Original definition by S.L. Lauritzen)
(M,g) : a Riemannian manifold
C : a totally symmetric (0, 3)-tensor field

We call the triplet (M, g,C) a statistical manifold.
� �
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Example 2.4 (Normal distributions) ( l(x; ξ) = log p(x, ξ) )

M = {p(x; ξ) | ξ = (ξ1, ξ2) = (μ, σ),

p(x; ξ) =
1√

2π(ξ2)2
exp

[
−(x− ξ1)2

2(ξ2)2

]
=

1√
2πσ2

exp

[
−(x− μ)2

2σ2

]}
We regard that M is a manifold with local coordinates (μ, σ).

gij =

∫ ∞

−∞

(
∂

∂ξi
log p(x, ξ)

)(
∂

∂ξj
log p(x, ξ)

)
p(x, ξ)dx

= E

[
∂l

∂ξi
∂l

∂ξj

] (
g = − 1

σ2

(
1 0
0 2

))
the Fisher information

Cijk = E

[
∂l

∂ξi
∂l

∂ξj
∂l

∂ξk

]
the cubic form or
the Amari-Chentsov tensor field

Γij,k = E

[
∂2l

∂ξi∂ξj
∂l

∂ξk

]
= Γ

(0)
ij,k −

1

2
Cijk

( ∇(0): the Levi-Civita
connection w.r.t. g

)
Γ∗
ij,k = E

[
∂2l

∂ξi∂ξj
∂l

∂ξk
+
∂l

∂ξi
∂l

∂ξj
∂l

∂ξk

]
= Γ

(0)
ij,k +

1

2
Cijk

(M,∇, g) and (M,∇∗, g) are statistical manifolds.
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2.2 Conformal-Projective structures

2.2 Conformal-Projective structures
� �
Definition 2.5
(M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent

def⇐⇒ There exist two functions φ and ψ such that

h̄(X, Y ) = eφ+ψh(X,Y ),

∇̄XY = ∇XY − h(X, Y )gradhψ + dφ(Y )X + dφ(X)Y
� �� �

(M,∇, h) and (M, ∇̄, h̄) are α-conformally equivalent
def⇐⇒ There exist a function φ such that

h̄(X, Y ) = eφh(X,Y ),

∇̄XY = ∇XY − 1 + α

2
h(X, Y )gradhφ

+
1 − α

2
{dφ(Y )X + dφ(X)Y }

� �
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2.2 Conformal-Projective structures

2.2 Conformal-Projective structures
� �
Definition 2.5
(M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent

def⇐⇒ There exist two functions φ and ψ such that

h̄(X, Y ) = eφ+ψh(X,Y ),

∇̄XY = ∇XY − h(X, Y )gradhψ + dφ(Y )X + dφ(X)Y
� �

Remark 2.6 (In the case φ = ψ)
(M,g), (M, ḡ) : Riemannian manifolds

∇0, ∇̄0 : their Levi-Civita connections

If g and ḡ are conformally equivalent, i.e. ḡ(X,Y ) = e2φg(X, Y )

=⇒ ∇̄0
XY = ∇0

XY − h(X, Y )gradhφ+ dφ(Y )X + dφ(X)Y

(M,∇0, g) and (M, ∇̄0, ḡ) are 0-conformally equivalent.
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2.2 Conformal-Projective structures

� �
Definition 2.5
(M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent

def⇐⇒ There exist two functions φ and ψ such that

h̄(X, Y ) = eφ+ψh(X,Y ),

∇̄XY = ∇XY − h(X, Y )gradhψ + dφ(Y )X + dφ(X)Y
� �

Remark 2.7
ψ is constant: =⇒ ∇̄XY = ∇XY + dφ(Y )X + dφ(X)Y

∇ and ∇̄ are projectively equivalent.

(M,∇, h) and (M, ∇̄, h̄) are (−1)-conformally equivalent

φ is constant: =⇒ ∇̄XY = ∇XY − h(X, Y )gradhψ
∇ and ∇̄ are dual-projectively equivalent.
(∇∗ and ∇̄∗ are projectively equivalent.)

(M,∇, h) and (M, ∇̄, h̄) are 1-conformally equivalent
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2.2 Conformal-Projective structures

Projective transformation ((−1)-conf. transf.)

c : I = (−ε, ε) → M : a curve on M

c is a geodesic ⇐⇒ ∇ d
dt
ċ = 0

c is a pre-geodesic ⇐⇒ ∇ d
dt
ċ = γ(t)ċ

� �

A projective transformation preserves pre-geodesics (un-
parametrized geodesics).

� �

∇ d
dt
ċ = β(t)ċ ⇐⇒ ∇̄ d

dt
ċ = γ̄(t)ċ
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2.2 Conformal-Projective structures

Dual-projective transformation (1-conf. transf.)

c : I = (−ε, ε) → M, β(X) = h(X, ċ) : tangent 1-form

c is a dual geodesic ⇐⇒ ∇ d
dt
β = 0

c is a pre-dual geodesic ⇐⇒ ∇ d
dt
β = γ(t)β

� �
A projective transformation preserves pre-dual geodesics.

� �

∇ d
dt
β = γ(t)β ⇐⇒ ∇̄ d

dt
β = γ̄(t)β
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2.3 Umbilical points

2.3 Umbilical points

(M,∇, h) : a statistical manifold, n ≥ 3
N : a submanifold of M
ν : the unit normal vector along N
∇′ : the induced connection
h′ : the induced metric

(N,∇′, h′) is a statistical submanifold.

∇XY = ∇′
XY + α(X, Y )ν

∇Xν = −β#(X) + τ (X)ν

Set β(X,Y ) = h′(β#(X), Y ).

� �
Definition 2.8
p ∈ N
p : a tangentially umbilical point of N in (M,∇, h)

def⇐⇒ ∃c : αp = ch′
p

p : a normally umbilical point of N in (M,∇, h)
def⇐⇒ ∃c : βp = ch′

p
� �
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2.3 Umbilical points

� �

Theorem 2.9 (Kurose ’02)
(M,∇, h) and (M, ∇̄, h̄) : simply connected statistical manifolds,
dimM = n ≥ 3.

(M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent
⇐⇒

(1) Ric(X, Y ) − Ric(Y,X) = Ric(X, Y ) − Ric(Y,X)

(2) (∇, h) �→ (∇̄, h̄) preserves the tangentially umbilical points and
the normally umbilical points of any hypersurface of M .

� �

� �
Definition 2.8
p ∈ N
p : a tangentially umbilical point of N in (M,∇, h)

def⇐⇒ ∃c : αp = ch′
p

p : a normally umbilical point of N in (M,∇, h)
def⇐⇒ ∃c : βp = ch′

p
� �
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2.3 Umbilical points

� �
Definition 2.5
(M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent

def⇐⇒ There exist two functions φ and ψ such that

h̄(X, Y ) = eφ+ψh(X,Y ),

∇̄XY = ∇XY − h(X, Y )gradhψ + dφ(Y )X + dφ(X)Y
� �� �
Proposition 2.10
D, D̃ : contrast functions (divergences) on M
(M,∇, h), (M, ∇̃, h̃) : induced statistical manifolds
φ,ψ : functions on M .

(1) D̃(p||q) = eφ(p)D(p||q) =⇒
(M,∇, h) and (M, ∇̃, h̃) are (−1)-conformally equivalent.

(2) D̃(p||q) = eψ(q)D(p||q) =⇒
(M,∇, h) and (M, ∇̃, h̃) are 1-conformally equivalent.

(3) D̃(p||q) = eψ(p)+φ(q)D(p||q) =⇒
(M,∇, h) and (M, ∇̃, h̃) are conformally-projectively equiva-
lent.

� �
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2.3 Umbilical points

� �
Definition 2.5
(M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent

def⇐⇒ There exist two functions φ and ψ such that

h̄(X, Y ) = eφ+ψh(X,Y ),

∇̄XY = ∇XY − h(X, Y )gradhψ + dφ(Y )X + dφ(X)Y
� �� �
Definition 2.11
(M,∇, h) is conformally-projectively flat

def⇐⇒ (M,∇, h) is locally conformally-projectively equivalent
to some flat statistical manifold.

That is, for each point in M , ∃U ⊂ M : a neighborhood,
∃(U, ∇̄, h̄) : a flat statistical manifold such that
(U,∇|U, h|U) and (U, ∇̃, h̃) are conformally-projectively equivalent.

� �
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2.4 Conformal-projective invariants

2.4 Conformal-projective invariants

Definition 2.12
(M,∇, h) : a statistical manifold

∇∗ : the dual connection of ∇ R : the curvature tensor of ∇
Ric,Ric∗ : the Ricci tensors of ∇,∇∗

WCP (X, Y )Z = R(X, Y )Z

− 1

n− 2
{h(Y, Z)α(X) − h(X,Z)α(Y )

+β(Y, Z)X − β(X,Z)Y }
+

traceh(Ric)

(n− 1)(n− 2)
{h(Y, Z)X − h(X,Z)Y },

where α(X) :=
1

n
{Ric#(X) + (n− 1)(Ric∗)#(X)}

β(Y, Z) :=
1

n
{(n− 1)Ric(Y, Z) + Ric∗(Y, Z)}.

WCP : conformal-projective curvature tensor
� �

Proposition 2.13 (Kurose ’02)
Suppose that n ≥ 4.
(M,∇, h) is conformally-projectively flat ⇐⇒ WCP = 0.

� �
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2.4 Conformal-projective invariants

(M,∇, h) : a statistical manifold
C(X,Y, Z) := (∇Xh)(Y, Z), cubic form, Amari-Chentsov tensor

K(X, Y ) := KXY := ∇XY − ∇(0)
X Y .

� �

C(X, Y, Z) = −2h(KXY,Z),

KXY = ∇(0)
X Y − ∇∗

XY =
1

2
(∇XY − ∇∗

XY ).
� �
We may say that K is also a cubic form on (M,∇, h).
T � : the Tchebychev form on (M,∇, h)
T : the Tchebychev vector field on (M,∇, h)
def⇐⇒
T �(X) :=

1

n
trace{Y �→ KXY } = − 1

2n
traceh{(Y, Z) �→ C(X, Y, Z)},

h(X, T ) := T �(X), where n = dimM .

� �

K̃ : the traceless cubic form on (M,∇, h)
def⇐⇒ K̃XY = KXY − n

n+ 2
(h(X, Y )T + T �(Y )X + T �(X)Y )

� �
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2.4 Conformal-projective invariants

� �

ω, ω(0) : the parallel volume element with respect to ∇, ∇(0),

=⇒ T � =
1

2n
d log

∣∣∣∣ ωω(0)

∣∣∣∣ .
In particular, if ∇ is flat and {θi} is a ∇-affine coordinate system,

=⇒ T � = −1

n
d log

√
det(gij).

� �

T � : the Tchebychev form on (M,∇, h)
T : the Tchebychev vector field on (M,∇, h)
def⇐⇒
T �(X) :=

1

n
trace{Y �→ KXY } = − 1

2n
traceh{(Y, Z) �→ C(X, Y, Z)},

h(X, T ) := T �(X), where n = dimM .

� �

K̃ : the traceless cubic form on (M,∇, h)
def⇐⇒ K̃XY = KXY − n

n+ 2
(h(X, Y )T + T �(Y )X + T �(X)Y )

� �
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2.4 Conformal-projective invariants

� �
Proposition 2.14
(M,∇, h) and (M, ∇̄, h̄) are conformally-projectively equivalent
=⇒ Their traceless cubic forms coincide:˜̄K = K̃

� �

Proof: 2K̄XY = 2KXY − h(X, Y )(gradhψ − gradhφ)

−(dψ − dφ)(Y )X − (dψ − dφ)(X)Y.

Theorem 2.15
(M,∇, h), (M, ∇̄, h̄) : statistical manifolds, simply connected
Ric,Ric : symmetric, h, h̄ : conformally equivalent

K̃ = ˜̄K
=⇒(M,∇,h) and (M,∇̃,h̃) are conformally-projectively equivalent

A sketch of the proof:

∃φ1 ⇐= h, h̄ : conformally equivalent
∃ψ1 s.t. dψ1 = T̄ � − T � ⇐= Ricci symmetric, simply connected

Set ψ =
1

2
φ1 +

n

n+ 2
ψ1, φ =

1

2
φ1 −

n

n+ 2
ψ1.

Then ψ and φ give a conformal-projective relation form K̃ = ˜̄K
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2.4 Conformal-projective invariants

Monge-Ampere equations in affine differential geometry

T �(X) :=
1

n
trace{Y �→ KXY } = − 1

2n
traceh{(Y, Z) �→ C(X,Y, Z)}

If ∇ is flat and {θi} is a ∇-affine coordinate system,

=⇒ T � = −1

n
d log

√
det(gij).

� �

If M is simply connected, T � is integrable, and since ∇ is flat, the
metric g is given by a Hessian of the potential function ψ.
=⇒ there exist a function ω on M such that

ω = det(∂i∂jψ)

This is nothing but a Monge-Ampere equation.
� �
If (M, g,∇,∇∗) is doubly projectively flat
=⇒ (M,∇, g) and (M,∇∗, g) are spaces of constant curvature.
=⇒ We can choose ξ such that T � = 0 (proper affine hypersphere)
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3 Geometry of deformed exponential families
q-exponential, q-logarithm (q > 0)� �

expq x := (1 + (1 − q)x)
1

1−q (1 + (1 − q)x > 0) q-exponential

logq x :=
x1−q − 1

1 − q
(x > 0) q-logarithm

q → 1, these are the standard exponential function, and the stan-
dard logarithm function, respectively.

� �
F1(x), . . . , Fn(x) : random variables on Ω
θ = {θ1, . . . , θn} : parameters

S =

{
p(x, θ)

∣∣∣∣ p(x; θ) > 0,

∫
Ω

p(x; θ)dx = 1

}
: statistical model

� �

Definition 3.1 Sq = {p(x; θ)} : q-exponential family

def⇐⇒ Sq :=

{
p(x; θ)

∣∣∣∣∣p(x; θ)=expq

[
n∑
i=1

θiFi(x) − ψ(θ)

]
, p(x, θ)∈S

}
� �
ψ : strictly convex
⇐⇒ {∂1 logq p(x; θ), . . . , ∂n logq p(x; θ)} is linearly independent.

24/38



Example 3.2 (q-normal distribution (Student’s t-distribution))

p(x;μ, σ) =
1

zq

[
1 − 1 − q

3 − q

(x− μ)2

σ2

] 1
1−q

Set

θ1 =
2

3 − q
zq−1
q · μ

σ2
, θ2 = − 1

3 − q
zq−1
q · 1

σ2
.

Then

logq pq(x) =
1

1 − q
(p1−q − 1)

=
1

1 − q

{
1

z1−qq

(
1 − 1 − q

3 − q

(x− μ)2

σ2

)
− 1

}

=
2μzq−1

q

(3 − q)σ2
x− zq−1

q

(3 − q)σ2
x2 − zq−1

q

3 − q
· μ

2

σ2
+
zq−1
q − 1

1 − q

= θ1x+ θ2x2 − ψ(θ)

ψ(θ) = −(θ1)2

4θ2
− zq−1

q − 1

1 − q
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Example 3.3 (discrete distributions)
Ω = {x0, x1, . . . , xn}

S =

{
p(x; η)

∣∣∣∣∣ ηi > 0,

n∑
i=0

ηi = 1, p(x; η) =

n∑
i=0

ηiδi(x)

}
,

η0 = 1 −
n∑
i=1

ηi

n-dimensional probability simplex

Set θi =
1

1 − q

(
(ηi)

1−q − (η0)
1−q) = logq p(xi) − logq p(x0)

Then

logq p(x) =
1

1 − q
(p1−q(x) − 1) =

1

1 − q

n∑
i=0

ηqi δi(x)

=
1

1 − q

{
n∑
i=1

(
(ηi)

1−q − (η0)
1−q) δi(x) + (η0)

1−q − 1

}
ψ(θ) = − logq η0
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Remark 3.4 S = {p(x; θ)}: (standard) exponential family

gFij(θ) = E[(∂i log p(x; θ))(∂j log p(x; θ))]

= ∂i∂jψ(θ) :the Fisher metric

TFijk(θ) = E[(∂i log p(x; θ))(∂j log p(x; θ))(∂k log p(x; θ))]

= ∂i∂j∂kψ(θ) :the cubic form

� �

Definition 3.5 Sq = {p(x; θ)}: a q-exponential family

gqij(θ) = ∂i∂jψ(θ) : the q-Fisher metric

T qijk(θ) = ∂i∂j∂kψ(θ) : the q-cubic form
� �
On a deformed exponential family, the Fisher and the Hessian struc-
tures are different. (There are two different dually flat structures.)

Set Γ
q(e)
ij,k := Γ

q(0)
ij,k − 1

2
T qijk, Γ

q(m)
ij,k := Γ

q(0)
ij,k +

1

2
T qijk,

where Γ
q(0)
ij,k is the connection coefficient of the Levi-Civita connection

with respect to the q-Fisher metric gq.
∇q(e) : the q-exponential connection
∇q(m) : the q-mixture connection
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� �
Proposition 3.6 For Sq, the following hold:

(1) (Sq, g
q,∇q(e),∇q(m)) is a dually flat space.

(2) {θi} is a ∇q(e)-affine coordinate system on Sq.

(3) ψ is the potential of gq with respect to {θi}, that is,

gqij(θ) = ∂i∂jψ(θ).

(4) Set the q-expectation of Fi(x) by ηi = Eesc
q,p [Fi(x)].

=⇒ {ηi} is the dual coordinate system of {θi} w.r.t.. gq.

(5) Set φ(η) = Eesc
q,p [logq p(x; θ)]

=⇒ φ(η) is the potential of gq with respect to {ηi}.
� �
Pq(x) : the escort distribution of p(x) and the q-expectation of f(x)

def⇐⇒ Pq(x) = p(x)q, Eq,p[f(x)] =

∫
f(x)Pq(x)dx

Eesc
q,p [f(x)] : the normalized q-expectation of f(x)

def⇐⇒ Eesc
q,p [f(x)] =

∫
f(x)

Pq(x)

Zq(p)
dx, Zq(p) =

∫
p(x)qdx.
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� �
Proposition 3.6 For Sq, the following hold:

(1) (Sq, g
q,∇q(e),∇q(m)) is a dually flat space.

(2) {θi} is a ∇q(e)-affine coordinate system on Sq.

(3) ψ is the potential of gq with respect to {θi}, that is,

gqij(θ) = ∂i∂jψ(θ).

(4) Set the q-expectation of Fi(x) by ηi = Eesc
q,p [Fi(x)].

=⇒ {ηi} is the dual coordinate system of {θi} w.r.t. gq.

(5) Set φ(η) = Eesc
q,p [logq p(x; θ)]

=⇒ φ(η) is the potential of gq with respect to {ηi}.
� �

normalized Tsallis relative entropy (q-relative entropy)� �

Dq (p, r) = Eesc
q,p

[
logq p(x) − logq r(x)

]
(↓ (−α)-divergence)

=

1 −
∫
p(x)qr(x)1−qdx

(1 − q)Zq(p)

(
=

q

Zq(p)
D(1−2q)(p, r)

)
.

� �
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α-divergence (α = 1 − 2q)� �

D(1−2q) (p(x), r(x)) =
1

q

∫
Ω

p(x)q{logq p(x) − logq r(x)}dx
� �
D(1−2q) induces a non-flat invariant statistical manifold (Sq,∇(1−2q), gF ).

normalized Tsallis relative entropy （q-relative entropy）� �

Dq (p(x), r(x)) = Eesc
q,p

[
logq p(x) − logq r(x)

]
=

∫
Ω

p(x)q

Zq(p)
{logq p(x) − logq r(x)}dx

(
=

q

Zq(p)
D(1−2q)(p, r)

)
� �
Dq induces a Hessian manifold (flat statistical mfd.) (Sq,∇q(m), gq).

(Sq,∇e(m), gq) and (Sq,∇(2q−1), gF ) are 1-conformally equivalent, since

(Dq(p, q) = ) D(r, p) =
q

Zq(p)
D(2q−1)(r, p).

� �

ν(x)
pos. measure

−→×
ν(x)

Zq(ν)
prob. measure

Normalization of a positive measure
to a probability measure
is NOT a trivial problem.

� �
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4 Geometric divergence and α-divergence

4.1 Review: affine immersions

f : M → Rn+1: an immersion
ξ: a local vector field along f

� �
Definition 4.1
{f, ξ} : M → Rn+1 is an affine immersion

def⇐⇒ For an arbitrary point p ∈ M ,

Tf(p)R
n+1 = f∗(TpM) ⊕R{ξp}

ξ: a transversal vector field
� �
D: the standard flat affine connection on Rn+1

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ,

DXξ = −f∗(SX) + τ (X)ξ.

� �

f : non-degenerate
def⇐⇒ h : non-degenerate

{f, ξ} : equiaffine
def⇐⇒ τ = 0

� �
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4.1 Review: affine immersions

� �
Proposition 4.2
{f, ξ} : non-degenerate, =⇒ (M,∇, h) is a statistical manifold,

equiaffine 1–conformally flat.
� �� �
Proposition 4.3
(M,∇, h) : a simply connected statistical manifold

1-conformally flat

=⇒ There exists {f, ξ} which realizes (M,∇, h) in Rn+1.
� �
Fundamental structural equations for affine immersions

Gauss: R(X,Y )Z = h(Y, Z)SX − h(X,Z)SY

Codazzi: (∇Xh)(Y, Z) + τ (X)h(Y, Z)

= (∇Y h)(X,Z) + τ (Y )h(X,Z)

(∇XS)(Y ) − τ (X)SY = (∇Y S)(X) − τ (Y )SX

Ricci: h(X,SY ) − h(Y, SX) = (∇Xτ )(Y ) − (∇Y τ )(X)

� �

f : non-degenerate
def⇐⇒ h : non-degenerate

{f, ξ} : equiaffine
def⇐⇒ τ = 0

� �

32/38



4.2 Conormal maps and geometric divergences

4.2 Conormal maps and geometric divergences

{f, ξ} : nondegenerate, equiaffine
Rn+1 : the dual space of Rn+1

〈 , 〉 : the canonical pairing of Rn+1 and Rn+1.
� �

v : M → Rn+1 is the conormal map of {f, ξ}
def⇐⇒ 〈v(p), ξp〉 = 1,

〈v(p), f∗Xp〉 = 0
� �

We define a function on M ×M by

ρ(p, r) = 〈v(r), f(p) − f(r)〉. (1)

ρ is called the geometric divergence on M .

The geometric divergence is independent of realization of (M,∇, h).
cf. affine support function:

ρ : Rn+1 ×M → R

ρ(x, r) = 〈v(r), x− f(r)〉
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4.2 Conormal maps and geometric divergences

(M,∇, h) : a simply connected flat statistical manifold.
( =⇒ (M,h,∇,∇∗) is a dually flat space.)

=⇒ ∃ψ : a function onM (potential function) such that
∂2ψ

∂θi∂θj
= gij

=⇒ {f, ξ} : an affine immersion (graph immersion)

f :

⎛⎝θ1...
θn

⎞⎠ �→

⎛⎜⎜⎝
θ1
...
θn

ψ(θ)

⎞⎟⎟⎠ , ξ =

⎛⎜⎜⎝
0
...
0
1

⎞⎟⎟⎠
v : the conormal map of {f, ξ},

v = (−η1, . . . ,−ηn, 1) ηi =
∂ψ

∂θi

Since φ(r) =
∑
ηi(r)θ

i(r) − ψ(r), we have

ρ(p, r) = 〈v(r), f(p) − f(r)〉
= −

∑
ηi(r)θ

i(p) + ψ(p) +
∑

ηi(r)θ
i(r) − ψ(r)

= ψ(p) + φ(r) −
∑

ηi(r)θ
i(p)

= D(p||r)
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4.3 Realization of q-exponential family and α-divergence

4.3 Realization of q-exponential family and α-divergence

Sq = {p(x; θ) ∣∣p(x; θ) = expq
[∑n

i=1 θ
iFi(x) − ψ(θ)

]} : q-exponential
family

the Hessian manifold (Sq,∇(e)q, gq)� �

{f, ξ} : an affine immersion (graph immersion)

f :

⎛⎝θ1...
θn

⎞⎠ �→

⎛⎜⎜⎝
θ1
...
θn

ψ(θ)

⎞⎟⎟⎠ , ξ =

⎛⎜⎜⎝
0
...
0
1

⎞⎟⎟⎠
v : the conormal map of {f, ξ},

v = (−η1, . . . ,−ηn, 1) ηi =
∂ψ

∂θi
= Eesc

q [Fi(x)]

ρq(p(θ), p(θ
′)) : the geometric divergence of (Sq,∇(e)q, gq)

ρq(p(θ), p(θ
′)) = 〈v(p(θ′)), f(p(θ)) − f(p(θ′))〉

= Eesc
q,p(θ′)

[
logq p(θ

′) − logq p(θ)
]

= D(p(θ)||p(θ′))
� �
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4.3 Realization of q-exponential family and α-divergence

the invariant manifold (Sq,∇(2q−1), gF ) (α = 2q − 1)� �

{f, ξ̄} : an affine immersion

f :

⎛⎝θ1...
θn

⎞⎠ �→

⎛⎜⎜⎝
θ1
...
θn

ψ(θ)

⎞⎟⎟⎠ , ξ̄ =
q

Zq

{
ξ + f∗gradh

(
log

Zq

q

)}
Zq =

∫
Ω

p(x; θ)qdx

vF : the conormal map of {f, ξ̄},

vF =
Zq

q
(−η1, . . . ,−ηn, 1)

ρFq (p(θ), p(θ
′)) : the geometric divergence of (Sq,∇(2q−1), gF )

ρFq (p(θ), p(θ
′)) = 〈vF (p(θ′)), f(p(θ)) − f(p(θ′))〉(

un-normalized
expectation

=⇒
)

=
1

q
Eq,p(θ′)

[
logq p(θ

′) − logq p(θ)
]

=
1

q(1 − q)

{
1 −

∫
Ω

p(θ)1−qp(θ′)qdx
}

= D(2q−1)(p(θ)||p(θ′)) = D(α)(p(θ)||p(θ′))
� �
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4.3 Realization of q-exponential family and α-divergence

What is the canonical divergence?

(1) If (M, g,∇,∇∗) is a dually flat space, the divergence coincides with
the well-known canonical divergence.

(2) The projection property should be hold.

γ ⊥ M at q (i.e. g(γ̇(0), X) = 0, ∀X ∈ TqM)

=⇒ D(p, q) = min
r∈M

D(p, r)
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Summary

q-information geometry� �

Sq = {p(x; θ)} : a q-exponential family

• (Sq,∇(e)q, gq) : a Hessian manifold (a flat statistical manifold)

• (Sq,∇(2q−1), gF ) : an invariant statistical manifold (α = 2q− 1)

• (Sq,∇e(q), gq), (Sq,∇(2q−1), gF ) are 1-conformally equivalent

• (Sq,∇(2q−1), gF ) is 1-conformally flat
� �

affine immersions and geometric divergences� �

Sq = {p(x; θ)} is realized by affine immersions Sq → Rn+1

• (Sq,∇e(q), g(q)) is realized by
f = (θ1, . . . , θn, ψ(θ))T , ξ = (0, . . . , 0, 1)T

ρq(p(θ), p(θ
′)) = D(p(θ)||p(θ′))

(
=Eesc

q,p(θ′)
[
logq p(θ

′)−logq p(θ)
])

• (Sq,∇(2q−1), gF ) is realized by

f = (θ1, . . . , θn, ψ(θ))T , ξ̄ =
q

Zq

{
ξ + f∗gradh

(
log

Zq

q

)}
ρFq (p(θ), p(θ

′)) = D(2q−1)(p(θ)||p(θ′)) (α-divergence)
� �
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5 Generalization of Legendre transformation
5.1 Centroaffine immersions of codimension two

M : an n-dimensional manifold
f : M → Rn+2: an immersion
ξ: a local vector field along f

� �
Definition 5.1
{f, ξ} : M → Rn+2 is a centroaffine immersions of codimension two

def⇐⇒
For an arbitrary point p ∈ M ,

Tf(x)R
n+2 = f∗(TxM)⊕R{ξx} ⊕R{f(x)}

ξ: a transversal vector field
� �

D: the standard flat affine connection on Rn+2

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ + k(X, Y )f,

DXξ = −f∗(SX) + τ (X)ξ + μ(X)f.
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5.1 Centroaffine immersions of codimension two

∇ : the induced connection
h : the affine fundamental form
τ : the transversal connection form
S : the affine shape operator

θ(X1, · · · , Xn) := det(f∗X1, · · · , f∗Xn, ξ, f)

the induced volume element
� �
Proposition 5.2

∇Xθ = τ (X)θ
� �� �
Definition 5.3
f : non-degenerate

def⇐⇒ h : non-degenerate

{f, ξ} : equiaffine
def⇐⇒ τ = 0

� �
D: the standard flat affine connection on Rn+2

DXf∗Y = f∗(∇XY ) + h(X,Y )ξ + k(X, Y )f,

DXξ = −f∗(SX) + τ (X)ξ + μ(X)f.
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5.1 Centroaffine immersions of codimension two

∇ : the induced connection
h : the affine fundamental form
τ : the transversal connection form
S : the affine shape operator

θ(X1, · · · , Xn) := det(f∗X1, · · · , f∗Xn, ξ, f)

the induced volume element
� �
Proposition 5.2

∇Xθ = τ (X)θ
� �� �
Definition 5.3
f : non-degenerate

def⇐⇒ h : non-degenerate

{f, ξ} : equiaffine
def⇐⇒ τ = 0

� �� �
Proposition 5.4
{f, ξ} : M → Rn+2 : non-degenerate, equiaffine
=⇒ (M,∇, h) is a statistical manifold, conformally-projectively flat

� �
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5.2 Dual maps and geometric divergences

5.2 Dual maps and geometric divergences

Rn+2 : the dual vector space of Rn+2

〈 , 〉 : the pairing of Rn+2 and Rn+2

� �
Definition 5.5
v, w : M → Rn+2

def⇐⇒ 〈v(p), ξp〉 = 1 〈w(p), ξp〉 = 0,

〈v(p), f(p)〉 = 0 〈w(p), f(p)〉 = 1,

〈v(p), f∗Xp〉 = 0 〈w(p), f∗Xp〉 = 0,
� �
We call v the conormal map of {f, ξ}
If h is non-degenerate
=⇒ {v, w} : M → Rn+2 is a centroaffine immersion of codimension
two. We call {v, w} the dual map of {f, ξ}.
� �
Proposition 5.6
{f, ξ} induces (M,∇, h) ⇐⇒ {v, w} induces (M,∇∗, h).

� �
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5.2 Dual maps and geometric divergences

� �
Definition 5.5
v, w : M → Rn+2 : the dual map of {f, ξ}.

def⇐⇒ 〈v(p), ξp〉 = 1 〈w(p), ξp〉 = 0,

〈v(p), f(p)〉 = 0 〈w(p), f(p)〉 = 1,

〈v(p), f∗Xp〉 = 0 〈w(p), f∗Xp〉 = 0,
� �� �
Definition 5.7
ρ : M ×M → R : the geometric divergence

def⇐⇒ ρ(p, q) = 〈v(q), f(p) − f(q)〉
� �
The geometric divergence ρ is a contrast function, and this is a special
form of an affine support function.
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5.2 Dual maps and geometric divergences

Legendre transformation

Proposition 5.8
(M,g,∇,∇∗) : a dually flat space

{θi} : a ∇-affine coordinate system
{ηi} : a ∇∗-affine coordinate system

=⇒ ∂ψ

∂θi
= ηi,

∂φ

∂ηi
= θi,

∂2ψ

∂θi∂θj
= gij,

∂2φ

∂ηi∂ηj
= gij, g

(
∂

∂θi
,
∂

∂ηj

)
=

{
1 (i = j)
0 (i �= j),

ψ(p) + φ(p) −
n∑
i=1

θi(p)ηi(p) = 0,

� �

(M,∇, g) and (M,∇∗, g) are flat statistical manifolds.
� �
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5.2 Dual maps and geometric divergences

f =

⎛⎜⎜⎜⎜⎝
θ1
...
θn

ψ
1

⎞⎟⎟⎟⎟⎠ , ξ =

⎛⎜⎜⎜⎜⎝
0
...
0
1
0

⎞⎟⎟⎟⎟⎠ =⇒ f∗
∂

∂θn
=
∂f

∂θn
=

⎛⎜⎜⎜⎜⎝
0
...
1
∂ψ
∂θn

0

⎞⎟⎟⎟⎟⎠
v = (−η1, . . . ,−ηn, 1, φ), w = (0, . . . , 0, 0, 1)

� �〈
v(p), f∗

∂

∂θi

〉
= 0 ⇐⇒ −ηi(p) +

∂ψ

∂θi
(p) = 0

〈v(p), f(p)〉 = 0 ⇐⇒ ψ(p) + φ(p) −
n∑
i=1

θi(p)ηi(p) = 0

ρ(p, q) = 〈v(q), f(p) − f(q)〉
= ψ(p) + φ(q) −

n∑
i=1

θi(p)ηi(q)

� �
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6 Quantum analogue of affine differential geometry
6.1 Quasi-statistical manifolds
M : a manifold (an open domain in Rn)
h : a non-degenerate (0, 2)-tensor field on M
∇ : an affine connection on M

T∇(X, Y ) = ∇XY − ∇YX − [X,Y ]: the torsion tensor of ∇
Definition 6.1
(M,∇, h): a quasi-statistical manifold

def⇐⇒ (∇Xh)(Y, Z) − (∇Y h)(X,Z) = −h(T∇(X, Y ), Z)

In addition, if h is a semi-Riemannian metric, then we say that
(M,∇, h) is a statistical manifold admitting torsion (SMAT).

� �
Definition 6.2
∇∗: (quasi-) dual connection of ∇ with respect to h

def⇐⇒ Xh(Y, Z) = h(∇∗
XY, Z) + h(Y,∇XZ).

� �� �
Proposition 6.3
The dual connection ∇∗ of ∇ is torsion free.

� �
We remark that (∇∗)∗ �= ∇ in general.
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6.1 Quasi-statistical manifolds

� �
Proposition 6.4
If h is symmetric h(X, Y ) = h(Y,X)
or skew-symmetric h(X, Y ) = −h(Y,X)

=⇒ (∇∗)∗ = ∇
� �� �
Proposition 6.5
(M,∇∗, h) : ∇∗ is torsion free and dual of ∇,

h is a non-degenerate (0, 2)-tensor field,
=⇒ (M,∇, h) is a quasi-statistical manifold.

� �� �

Suppose that (M,∇, h) is a statistical manifold admitting torsion.

(1) (M,∇, h) is a Hessian manifold
⇐⇒ R∇ = 0 and T∇ = 0
⇐⇒ (M,h,∇,∇∗) is a dually flat space.

(2) (M,∇, h) is a space of distant parallelism
⇐⇒ R∇ = 0 and T∇ �= 0 (R∇∗

= 0, T∇∗
= 0).

� �
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6.1 Quasi-statistical manifolds

SMAT with the SLD Fisher metric (Kurose 2007)

Herm (d) : the set of all Hermitian matrices of degree d.
S : a space of quantum states

S = {P ∈ Herm (d) | P > 0, traceP = 1}
TPS ∼= A0 A0 = {X ∈ Herm (d) | traceX = 0}
We denote by X̃ the corresponding vector field of X.
� �

For P ∈ S, X ∈ A0, define ωP(X̃) (∈ Herm (d)) by

X =
1

2
(PωP(X̃) + ωP(X̃)P )

The matrix ω(X̃) is the “symmetric logarithmic derivative”.
� �
A Riemannian metric and an affine connection are defined as follows:

hP (X̃, Ỹ ) =
1

2
trace

(
P (ωP(X̃)ωP (Ỹ ) + ωP (Ỹ )ωP (X̃))

)
,(

∇X̃Ỹ
)
P

= hP (X̃, Ỹ )P − 1

2
(XωP (Ỹ ) + ωP (Ỹ )X).

The SMAT (S,∇, h) is a space of distant parallelism.
(R = R∗ = 0, T ∗ = 0, but T �= 0)
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6.2 Affine distributions

6.2 Affine distributions

ω : TM → Rn+1: a Rn+1-valued 1-form
ξ : M → Rn+1: a Rn+1-valued function

� �
Definition 6.6
{ω, ξ} is an affine distribution

def⇐⇒ For an arbitrary point p ∈ M ,

Rn+1 = Imageωp ⊕R{ξx}
ξ: a transversal vector field

� �� �

{f, ξ}: an affine immersion =⇒ {df, ξ}: an affine distribution
� �

Xω(Y ) = ω(∇XY ) + h(X, Y )ξ,

Xξ = −ω(SX) + τ (X)ξ.

∇ : an affine connection (T∇(X,Y ) �= 0 in general)
h : a (0, 2)-tensor field (h(X, Y ) �= h(Y,X) in general)
S : a (1, 1)-tensor field
τ : a 1-form
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6.2 Affine distributions

Xω(Y ) = ω(∇XY ) + h(X, Y )ξ,

Xξ = −ω(SX) + τ (X)ξ.
� �

ω : symmetric
def⇐⇒ h : symmetric

ω : non-degenerate
def⇐⇒ h : non-degenerate

{ω, ξ} : equiaffine
def⇐⇒ τ = 0

� �
Symmetry and non-degeneracy of ω are independent of ξ.
� �
Proposition 6.7
Set ξ̃ := ω(V ) + φξ. Then the induced objects change as follows:

∇XY = ∇̃XY + h̃(X, Y )V,

h(X, Y ) = φh̃(X, Y ),

S̃X − τ̃ (X)V = φSX − ∇XV,

φτ̃ (X) = h(X, V ) + dφ(X) + φτ (X).
� �� �
Proposition 6.8
Image (dω)p ⊂ Imageωp ⇐⇒ h: symmetric
Image (dξ)p ⊂ Imageωp ⇐⇒ τ = 0

� �
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6.2 Affine distributions

� �
Proposition 6.9
{ω, ξ} : non-degenerate, equiaffine

=⇒ (M,∇, h) is a quasi-statistical manifold.
{ω, ξ} : symmetric, non-degenerate, equiaffine

=⇒ (M,∇, h) is a SMAT.
� �
Fundamental structural equations for affine distributions:

Gauss equation:

R(X, Y )Z = h(Y, Z)SX − h(X,Z)SY,

Codazzi equations:

(∇Xh)(Y, Z) + h(Y, Z)τ (X)

−(∇Y h)(X,Z) + h(X,Z)τ (Y ) = −h(T∇(X, Y ), Z),

(∇XS)(Y ) + τ (Y )SX − (∇Y S)(X) − τ (X)SY = −S(T∇(X, Y )),

Ricci equation:

h(X,SY ) − (∇Xτ )(Y ) − h(Y, SX) + (∇Y τ )(X) = τ (T∇(X,Y )).
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6.2 Affine distributions

SMAT with the SLD Fisher metric (Kurose 2007)

Herm (d) : the set of all Hermitian matrices of degree d.
S : a space of quantum states

S = {P ∈ Herm (d) | P > 0, traceP = 1}
TPS ∼= A0 A0 = {X ∈ Herm (d) | traceX = 0}
We denote by X̃ the corresponding vector field of X.
� �

For P ∈ S, X ∈ A0, define ωP(X̃) (∈ Herm (d)) and ξ by

X =
1

2
(PωP(X̃) + ωP(X̃)P ), ξ = −Id

Then {ω, ξ} is an equiaffine distribution.
� �
The induced quantities are given by

hP (X̃, Ỹ ) =
1

2
trace

(
P (ωP(X̃)ωP (Ỹ ) + ωP (Ỹ )ωP (X̃))

)
,(

∇X̃Ỹ
)
p
= hP (X̃, Ỹ )P − 1

2
(XωP (Ỹ ) + ωP (Ỹ )X).

(R = R∗ = 0, T ∗ = 0, but T �= 0)
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6.2 Affine distributions

SMAT with the real RLD Fisher metrics (Kurose 2007)

Herm (d) : the set of all Hermitian matrices of degree d.
S : a space of quantum states

S = {P ∈ Herm (d) | P > 0, traceP = 1}
TPS ∼= A0 A0 = {X ∈ Herm (d) | traceX = 0}
� �
For P ∈ S, X ∈ A0, set

ωP (X̃) =
1

2
(P−1X +XP−1), ξ = −Id

Then {ω, ξ} is an equiaffine distribution.
� �
The induced quantities are given by

hP (X̃, Ỹ ) =
1

2
trace(P−1(XY + Y X)),

ωP(∇X̃Ỹ ) = hP(X̃, Ỹ )Id −
1

2
(P−1XP−1Y + Y P−1XP−1).

(R = R∗ = 0, T ∗ = 0, but T �= 0)
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6.3 Triviality of quasi-statistical manifolds

6.3 Triviality of quasi-statistical manifolds

(M,∇, h): a quasi-statistical manifold

∇ is of (weak) constant curvature
def⇐⇒ There exists a positive function k such that

R∇(X,Y )Z = k{h(Y, Z)X − h(X,Z)Y }
Theorem 1

{ω, ξ} : a non-degenerate, equiaffine distribution.
(M,∇, h) : the induced quasi-statistical manifold of {ω, ξ},

∇ : weak constant curvature

hk(X, Y ) := kh(X, Y ), ∇k
XY := ∇XY + d(log k)(X)Y

=⇒ (M,∇k, hk) is a statistical manifold of constant curvature 1.

This theorem implies that a constant curvature quasi-statistical
manifold is easily obtained from a standard statistical manifold.
On the other hand, in the case R = 0, (i.e., (M,∇, h) is a space of

distant parallelism), we can define non-trivial quasi-statistical mani-
folds.
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6.3 Triviality of quasi-statistical manifolds

Theorem 1
{ω, ξ} : a non-degenerate, equiaffine distribution.

(M,∇, h) : the induced quasi-statistical manifold of {ω, ξ},
∇ : weak constant curvature

hk(X, Y ) := kh(X, Y ), ∇k
XY := ∇XY + d(log k)(X)Y

=⇒ (M,∇k, hk) is a statistical manifold of constant curvature 1.

Fundamental structural equations for affine distributions:

Gauss equation:

R(X, Y )Z = h(Y, Z)SX − h(X,Z)SY,

Codazzi equations:

(∇Xh)(Y, Z) + h(Y, Z)τ (X)

−(∇Y h)(X,Z) + h(X,Z)τ (Y ) = −h(T∇(X, Y ), Z),

(∇XS)(Y ) + τ (Y )SX − (∇Y S)(X) − τ (X)SY = −S(T∇(X, Y )),

Ricci equation:

h(X,SY ) − (∇Xτ )(Y ) − h(Y, SX) + (∇Y τ )(X) = τ (T∇(X,Y )).
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6.4 Conormal maps and geometric quasi-divergences

6.4 Conormal maps and geometric quasi-divergences

{ω, ξ} : nondegenerate, equiaffine
Rn+1 : the dual space of Rn+1

〈 , 〉 : the canonical pairing of Rn+1 and Rn+1.
� �

v : M → Rn+1 is the conormal map of {ω, ξ}
def⇐⇒ 〈v(p), ξp〉 = 1,

〈v(p), ω(Xp)〉 = 0
� �

We define a function on TM ×M by

ρ(X, q) = 〈v(q), ω(X)〉.
ρ is called the geometric quasi-divergence on M .

(1) If ω is symmetric, ρ is called the geometric pre-divergence on M .

(2) A SMAT or a quasi statistical manifold can be induced from these
divergences.

(3) More generally, a quasi statistical manifold can be induced from a
pre-contrast function.
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6.5 Generalized projection theorem

6.5 Generalized projection theorem
Theorem 6.10

{ω, ξ} : an affine distribution to Rn+1

(M,∇, h) : a quasi statistical manifold induced from {ω, ξ}
with the quasi-dual connection ∇∗

ρ : the geometric quasi-divergence on (M,∇, h)
N ⊂ M : a submanifold in M

p ∈ M\N, q ∈ N
γ : the ∇∗ geodesic connecting p and q

Then

γ ⊥ N at q (i.e. h(γ̇(0), V ) = 0, ∀V ∈ TqN) ⇐⇒ ρ(V, γ(t)) = 0

Remark 6.11
h(V, γ̇(0)) �= 0 in general
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6.5 Generalized projection theorem

min
u∈U

DKL(p(η̂), p(u)) ⇐⇒ min
u∈U

(
− 1

N

N∑
i=1

log p(xi;u)

)

=⇒
N∑
i=1

s(xi;u) = 0 estimating equation

si(x;u) =
∂

∂ui
log p(x;u) : score function for u
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6.5 Generalized projection theorem

Statistical manifolds� �

Affine immersions ⊂ Dual connections
• divergences, contrast functions
• exponential families, dually flat spaces

� �

Statistical manifolds admitting torsion (SMAT)� �

Affine distributions ⊂ Dual connections

• pre-divergence, pre-contrast functions

• quantum IG, non-conservative estimation
� �

Quasi statistical manifolds� �

Affine distributions ⊂ Quasi-dual connections

• quasi-divergence, quasi-contrast functions

• symplectic structures, special Kähler manifolds
� �
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Summary

q-information geometry� �

Sq = {p(x; θ)} : a q-exponential family

• (Sq,∇(e)q, gq) : a Hessian manifold (a flat statistical manifold)

• (Sq,∇(2q−1), gF ) : an invariant statistical manifold (α = 2q− 1)

• (Sq,∇e(q), gq), (Sq,∇(2q−1), gF ) are 1-conformally equivalent

• (Sq,∇(2q−1), gF ) is 1-conformally flat
� �

affine immersions and geometric divergences� �

Sq = {p(x; θ)} is realized by affine immersions Sq → Rn+1

• (Sq,∇e(q), g(q)) is realized by
f = (θ1, . . . , θn, ψ(θ))T , ξ = (0, . . . , 0, 1)T

ρq(p(θ), p(θ
′)) = D(p(θ)||p(θ′))

(
=Eesc

q,p(θ′)
[
logq p(θ

′)−logq p(θ)
])

• (Sq,∇(2q−1), gF ) is realized by

f = (θ1, . . . , θn, ψ(θ))T , ξ̄ =
q

Zq

{
ξ + f∗gradh

(
log

Zq

q

)}
ρFq (p(θ), p(θ

′)) = D(2q−1)(p(θ)||p(θ′)) (α-divergence)
� �



Statistical inferences

Dually flat spaces� �

(x1, x2, . . . , xN): N -independent observations
L(θ) = p(x1; θ)p(x2; θ) · · · p(xN ; θ)
=⇒ Maximum likelihood estimator, dually flat spaces

� �
Generalized conformal geometry� �

(x1, x2, . . . , xN): N -observations, but they are correlated.
Lq(θ) = p(x1; θ)⊗q p(x2; θ) ⊗q · · · ⊗q p(xN ; θ)
=⇒ anomalous statistical physics, sequential estimations

generalized conformally flat statistical manifolds
� �

Non-integrable geometry� �

(x1, x2, . . . , xN): N -independent events, but we cannot observe.
Likelihood functions are complicated
=⇒ non-conservative estimator,

statistical manifolds admitting torsion
� �


