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1 Affine immersions

1.1 Affine immersions

f: M — R": an immersion
&: a local vector field along f

P
Definition 1.1

{f,&}: M — R""! is an affine immersion

def For an arbitrary point p € M,

Tf(p)Rn_i_1 — f*(TpM) D R{gp}

&: a transversal vector field
o
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1 Affine immersions

1.1 Affine immersions
f: M — R"!: an immersion
&: a local vector field along f

p
Definition 1.1

{f, €} : M — R"! is an affine immersion

PN For an arbitrary point p € M,

Tf(p)RnJrl = fu(TpM) & R{&,}

&: a transversal vector field
o

N (R";2)

Riemannian geometry Affine geometry
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1 Affine immersions

1.1 Affine immersions
f: M — R": an immersion
&: a local vector field along f

p
Definition 1.1

{f,€} : M — R™"! is an affine immersion

PN For an arbitrary point p € M,

Tf(p)RnJrl = fu(TpM) & R{&,}

&: a transversal vector field

.

D: the standard flat affine connection on R™!

Dx f.Y = f.(VxY)+ h(X,Y)§,
Dxt = —f.(SX) + T(X)E.

{f, £}, {f 5} affine immersions
V = V h = h S = S =T

< {f, &}, {f, 5} are affinely congruent.
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1 Affine immersions

1.1 Affine immersions
f: M — R": an immersion
&: a local vector field along f

p
Definition 1.1

{f, €} : M — R"! is an affine immersion

PN For an arbitrary point p € M,

Tf(p)RnJrl = fu(TpM) & R{&,}

&: a transversal vector field
o

D: the standard flat affine connection on R™!

Dx f.Y = f.(VxY)+ h(X,Y)§,
Dxt = —f.(SX) + T(X)E.

: the induced connection

: the affine fundamental form

: the affine shape operator

: the transversal connection form

N>
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1.2 Equiaffine structures and statistical manifolds

1.2 Equiaffine structures and statistical manifolds

D: the standard flat affine connection on R™!

Dxf.Y = f.(VxY)+h(X,Y)E,
Dx¢ = —f.(SX) + T(X)E.

- \
f : non-degenerate & op non-degenerate
{f,&} : equiaffine E =0
. %
- \
w : the induced volume element (n-form) with respect to {f, &}
def
W(X1yeeoy Xp) 1= det(fiX1yeooy fuXns &),
\where “det” is the standard volume element on R™'1. )
4 N
V,T,w : induced objects from {f, &}
\ — (Vyw)(X1y..., X)) = 7(V)w (X, ..oy X0) )

7T =0 <= w is parallel with respect to V.
[1] w: a uniform distribution(]
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1.2 Equiaffine structures and statistical manifolds

p
Proposition 1.2
{f,&} : non-degenerate, =—> (M, V, h) is a statistical manifold,

equiaffine 1—-conformally flat.
o

p
Proposition 1.3
(M,V,h) : a simply connected statistical manifold
1-conformally flat

— There exists {f, £} which realizes (M, V,h) in R""!.

-

Fundamental structural equations for affine immersions

Gauss: R(X,Y)Z =h(Y,Z)SX — h(X,Z2)SY
Codazzi: (Vxh)(Y,Z) + m7(X)h(Y, Z)
= (Vyh)(X, Z) + 7(Y)h(X, Z)
(VxS)(Y) — 7(X)SY = (VyS)(X) —1(Y)SX

Ricci: h(X,SY)—-h(Y,S5X)=(VxT)(Y) — (Vy7)(X)
f : non-degenerate &L h non-degenerate
def

{fv €} . equiafﬁne — T7=0
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2 Statistical manifolds

M : a manifold (an open domain in R")
h : a (semi-) Riemannian metric on M
V : an affine connection on M

p
Definition 2.1 (Kurose)
We say that the triplet (M, V,h) is a statistical manifold

] L (Vxh)(Y, Z) = (Vyh)(X, Z).

C(X,Y,Z):=(Vxh)(Y,Z), the cubic form,
the Amari-Chentsov tensor field

p
Definition 2.2
V*: the dual connection of V with respect to h

s Xh(Y, Z) = h(VLY, Z) + h(Y,VxZ).

.

(M, V*,h): the dual statistical manifold of (M, V,h).

p
Remark 2.3 (Original definition by S.L. Lauritzen)
(M,g) : a Riemannian manifold

C : a totally symmetric (0, 3)-tensor field
We call the triplet (M, g, C) a statistical manifold.

-
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Example 2.4 (Normal distributions) ( U(x;€) = logp(xz, &) )
M = {p(z;§) | £ = (519 52) = (u,0),

et = e [ = e [ 22

We regard that M is a manifold with local coordinates (u, o).

gij = /oo (i log p(, 5)) (i log p(z, 5)) p(z,§)dx

o¢’ 0¢J
ol 0Ol 1 /10 _ . .
= F o = —— the Fisher information
¢ 9e o2\ 02
C... — E 0l ol 0Ol the cubic form or
Wk T | 9gi agd aEk the Amari-Chentsov tensor field
- 9%l Ol 1 (0), -
Tiix = E i _ ng)k — “Cin V¥%: the Levi-Civita
’ D€' &I OEFR J: connection w.r.t. g
I _E'BZl 8l+8l8l 8l]_ (O)—I—C
ik = | geiogiogk T agiogiagk] — Tk T g

(M,V,g) and (M,V*,g) are statistical manifolds.
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2.2 Conformal-Projective structures

2.2 Conformal-Projective structures

p
Definition 2.5

(M,V,h) and (M, V,h) are conformally-projectively equivalent

4 There exist two functions ¢ and 1 such that

h(X,Y) = e*™h(X,Y),
VxY = VxY — h(X,Y)grad,yp + dp(Y) X + dp(X)Y

-

o

4 _
(M,V,h) and (M, V,h) are a-conformally equivalent

4 There exist a function ¢ such that

h(X,Y) = e’h(X,Y),

VxY = VxY — H_Tah(X, Y)grad,
1Y dp(YV) X + dp(X) V)

2
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2.2 Conformal-Projective structures

2.2 Conformal-Projective structures

-

Definition 2.5

(M,V,h) and (M, V,h) are conformally-projectively equivalent

4 There exist two functions ¢ and 1 such that

h(X,Y) = e*™h(X,Y),
VxY = VxY — h(X,Y)grad,yp + dp(Y) X + dp(X)Y

-

Remark 2.6 (In the case ¢ = v)
(M,g), (M,g) : Riemannian manifolds
Ve, v° : their Levi-Civita connections
If g and g are conformally equivalent, i.e. g(X,Y) = e??g(X,Y)

— VY = VLY — h(X,Y)gradpp +dop(Y) X +do(X)Y
(M,V°, g) and (M, VY, g) are 0-conformally equivalent.
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2.2 Conformal-Projective structures

p
Definition 2.5

(M,V,h) and (M, V,h) are conformally-projectively equivalent
e There exist two functions ¢ and 1 such that

h(X,Y) = e?™h(X,Y),
va = VxY — h(X, Y)gradh¢ + d¢(Y) X + dqb(X) Y

.

Remark 2.7 _
1 is constant: = VxY =VxY +dop(Y) X +dop(X)Y

V and V are projectively equivalent.
(M,V,h) and (M, V,h) are (—1)-conformally equivalent

¢ is constant: =—> VxY = VxY — h(X,Y)grad,
V and V are dual-projectively equivalent.
(V* and V* are projectively equivalent.)
(M,V,h) and (M, V,h) are 1-conformally equivalent
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2.2 Conformal-Projective structures

Projective transformation ((—1)-conf. transf.)

c:I =(—e,e) > M: acurveon M
c is a geodesic < Vdic' =0
t
c is a pre-geodesic <= Vdié = ~v(t)¢
t

A projective transformation preserves pre-geodesics (un-
parametrized geodesics).

Ve = p(t)e — Vaié=7~(t)e

d
dt

\ \
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2.2 Conformal-Projective structures

Dual-projective transformation (1-conf. transf.)

c:I=(—e,e) > M, B(X) =h(X,¢): tangent 1-form
c is a dual geodesic <= Vdi,B =0
t
c is a pre-dual geodesic <= Vdiﬁ = ~(t)8
t

[A projective transformation preserves pre-dual geodesics.

VaB =~(t)B <~ 6%5 = ()8
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2.3 Umbilical points

2.3 Umbilical points
(M,V,h) : a statistical manifold, n > 3

N : a submanifold of M

v : the unit normal vector along NV
Vv’ : the induced connection

h' : the induced metric

(N,V’,h’) is a statistical submanifold.

VxY = VLY + a(X,Y)v
Vxv = —8%(X) + 7(X)v

Set B(X,Y) = W(B#(X),Y).

/Deﬁnition 2.8

peEN

p : a tangentially umbilical point of N in (M, V., h)
Y NLEE ap = ch

p : a normally umbilical point of N in (M, V,h)

def
£S5 e B, =ch),
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2.3 Umbilical points

~

p
Theorem 2.9 (Kurose ’02)

(M,V,h) and (M,V,h) : simply connected statistical manifolds,

dimM =n > 3.

(M,V,h) and (M,V,h) are conformally-projectively equivalent
<—

(1) Ric(X,Y) — Ric(Y, X) = Ric(X,Y) — Ric(Y, X)

(2) (V,h) — (V,h) preserves the tangentially umbilical points and

the normally umbilical points of any hypersurface of M.
N J

/Deﬁnition 2.8

pEN
p : a tangentially umbilical point of N in (M, V,h)

def 3 /

<~ “c: op=ch,

p : a normally umbilical point of N in (M, V,h)
def 3J /

<~ “c: [p= ch;,
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2.3 Umbilical points

'Definition 2.5 \
(M,V,h) and (M, V,h) are conformally-projectively equivalent
4 There exist two functions ¢ and v such that
h(X,Y) = e?™h(X,Y),
va = VxY — h(X, Y)gradh¢ + d¢(Y) X + dqb(X) Y
N y
N

/Proposition 2.10

D, D : contrast functions (divergences) on M
(M,V,h),(M,V, iz) : induced statistical manzifolds
¢, : functions on M.

(1) D(p|lq) = e*®PD(pllg) . =
(M,V,h) and (M,V,h) are (—1)-conformally equivalent.

(2) D(pllg) = e*@DD(pllg) =
(M,V,h) and (M,V,h) are 1-conformally equivalent.

(3) D(pllq) = e*®**DD(p|lqg) =
(M,V,h) and (M,V,h) are conformally-projectively equiva-
lent.

%
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2.3 Umbilical points

'Definition 2.5 \
(M,V,h) and (M, V,h) are conformally-projectively equivalent
4 There exist two functions ¢ and v such that
h(X,Y) = e?™h(X,Y),
va = VxY — h(X, Y)gradh¢ + d¢(Y) X + dqb(X) Y
N y
N

p
Definition 2.11
(M, V,h) is conformally-projectively flat
def (M, V, h) is locally conformally-projectively equivalent
to some flat statistical manifold.

That is, for each point in M, U C M : a neighborhood,

(U, V,h) : a flat statistical manifold such that

(U, V|u, hly) and (U, V, h) are conformally-projectively equivalent.
o

%
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2.4 Conformal-projective invariants

2.4 Conformal-projective invariants

Definition 2.12
(M,V,h) : a statistical manifold

V* : the dual connection of V R : the curvature tensor of V
Ric, Ric* : the Ricci tensors of V, V*

Wep(X,Y)Z = R(X,Y)Z
_ﬁ{h(Y, Z)a(X) — h(X,Z)a(Y)

‘+‘/53(ji/;A£31);!(- o /Ei(F}KT9 237)717'}-
tracep (Ric)

(n 1— 1)(n — 2)
where  a(X) := E{Ric#(X) + (n — 1)(Ric*)*(X)}

{:’1’(117;‘£3i);!(- o ’1'(;)(79 237)f§"}-,

B(Y, Z) := %{(n — DRic(Y, Z) + Ric* (Y, Z)}.

Wep : conformal-projective curvature tensor

- 2
Proposition 2.13 (Kurose ’02)
Suppose that n > 4.
(M,V,h) is conformally-projectively flat <— Wep = 0.

N y
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2.4 Conformal-projective invariants

(M,V,h) : a statistical manifold
C(X,Y,Z) :=(Vxh)(Y,Z), cubic form, Amari-Chentsov tensor

K(X,Y) := KxY :=VxY — VY.

e N
C(X,Y,Z) = —2h(KxY, Z),
1
KxY = Vv —viy = (VXY — ViY).
N )

We may say that K is also a cubic form on (M, V, h).

T’ : the Tchebychev form on (M, V,h)

T : the Tchebychev vector field on (M, V, h)
def

1 1
T°(X) := —trace{Y — KxY} = —Z—traceh{(Y, Z) — C(X,Y,2Z)},
n n

h(X,T) := T(X), where n = dim M.
- N
K : the traceless cubic form on (M, V,h)
def KxY = KxY — %(h(X, Y)T + T°(Y)X + T (X)Y)
n

- /
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2.4 Conformal-projective invariants

w, w© : the parallel volume element with respect to V, V(O),

= Lgiee|
2n, w(0)

In particular, if V is flat and {6'} is a V-affine coordinate system,

1
— T = ——dlog \/det(gij).
n

- /

T’ : the Tchebychev form on (M, V,h)

T : the Tchebychev vector field on (M, V, h)
def

1 1
T°(X) := —trace{Y — KxY} = —z—traceh{(Y, Z)— C(X,Y,2Z)},
n n

h(X,T) := T°(X), where n = dim M.

4 N

—~—

K : the traceless cubic form on (M, V, h)

def

KxY = KxY — %(h(X, Y)T + T°(Y)X + T (X)Y)
n

. /
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2.4 Conformal-projective invariants

4 N

Proposition 2.14
(M,V,h) and (M,V,h) are conformally-projectively equivalent
— Thewr traceless cubic forms coincide:

—~—

K=K

Proof: 2KxY = 2KxY — h(X,Y)(grad, — grad, @)
—(dy —d¢)(Y)X — (dy — do)(X)Y.

Theorem 2.15 _ _
(M,V,h),(M,V,h) : statistical manifolds, simply connected

Ric, Ric : symmetric, h,h : conformally equivalent
K=K
—(M,V,h) and (M,%,h) are conformally-projectively equivalent

A sketch of the proof:

¢y <= h,h: conformally equivalent
Fap; s.t. dipy = T — T® <= Ricci symmetric, simply connected

1 n 1 n
Set ¢=§¢1+n+2¢1, ¢=§¢1—n+2¢1-

Then v and ¢ give a conformal-projective relation form K=K
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2.4 Conformal-projective invariants

Monge-Ampere equations in affine differential geometry

1 1
T°(X) := —trace{Y — KxY} = —z—traceh{(Y, Z) — C(X,Y,2)}
n n

If V is flat and {0'} is a V-affine coordinate system,

1
— T = ——dlog \/det(gij).
n

- N
If M is simply connected, T” is integrable, and since V is flat, the

metric g is given by a Hessian of the potential function .
—> there exist a function w on M such that

W = det(aiaj’(b)

This is nothing but a Monge-Ampere equation.
N J

If (M,g,V,V?*) is doubly projectively flat
—> (M,V,g) and (M, V*,g) are spaces of constant curvature.
— We can choose ¢ such that T° = 0 (proper affine hypersphere)
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3 Geometry of deformed exponential families

- g-exponential, g-logarithm (g > 0) N
1
exp,z:=(1+(1—gq)xr)7 (1+(1—-gq)r >0) g-exponential
xl=7 -1
log, T := ] (x > 0) g-logarithm
—dq
g — 1, these are the standard exponential function, and the stan-
Kdard logarithm function, respectively.
J
Fi(x),...,F,(x) : random variables on (2
0 ={0',...,0"} : parameters

S = {p(m,@) ' p(x;0) > O,/ p(x; 0)dx = 1}: statistical model
Q

B
Definition 3.1 S; = {p(z;0)} : g-exponential family

N Sqi= {p(m; 0)

p(x; 0) =exp, [Z 0'Fi(z) — ¢(9)] , p(x,0) € S}

=1
\

1 : strictly convex
<= {0:log,p(x;0),...,0,log,p(x;0)} is linearly independent.
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Example 3.2 (g-normal distribution (Student’s t-distribution))
1

1 1 —q(x—p)?|e
p(zsp,0) = — |1 — >
Zq 3—q o
Set
0! — 2 zq—l.ﬂ 0?2 = _— 1 ~q—1 i
3—q ¢ o2’ 3—q ¢ o2
Then
1 g
log, py(xz) = ——(p 7 —1)
1—gq
1 [ 1 ( 1—q(w—u)2> :
1—gq zé_q 3—q o2
1 —1 —1 2 —1 _
_ 2uzg B zg 2 zg Nz —I—Zg 1
(83—q)o?  (3—q)o? 3—q 0o? 1—¢q
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Example 3.3 (discrete distributions)
Q={xg,x15...,Tn}

S = {p(m; u)

m >0, Y ni=1, p(x;n) = mesz'(%’)} :
i=0

i i=0
Mo =1— Z yp
i=1

n-dimensional probability simplex
. 1
Set 0" = E (("h’)l_q — (no)l_q) = log, p(x;) — log, p(xo)

Then

@) 1) = S )

log, p(z) = -— .

=1

¢(9) — lqu To

B ﬁ {Z ()"~ — (10)'77) di(z) + (m0)' 7 — 1}

26/38



Remark 3.4 S = {p(x;0)}: (standard) exponential family
g;;(8) = E[(8;1og p(x;0))(8; log p(x; 0))]
0;0;1(0) :the Fisher metric

E[(8;1og p(x; 0))(9; log p(x; 6))(0k log p(x; 0))]
= 0,0;0,¢(0) :the cubic form

T;(6)

B
Definition 3.5 S, = {p(x;0)}: a g-exponential family

g;;(0) = 0;0;4(0) : the g-Fisher metric
T;::(0) = 0;0;0x(0) : the g-cubic form
N y
On a deformed exponential family, the Fisher and the Hessian struc-
tures are different. (There are two different dually flat structures.)

1 1
e 0 m 0
Set I‘Zy(k) 1= I‘Z;,k) — §Ti§'ka Fg;,kz) "= F;:]g(,k) + §Ti§'k’

where I‘g;gg) is the connection coefficient of the Levi-Civita connection
with respect to the g-Fisher metric g9.
Vvie) . the g-exponential connection

V4™ . the g-mixture connection
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/Proposition 3.6 For S,, the following hold:

(1) (Sg, g2, V) V4M) is a dually flat space.

(2) {6} is a V9©)-affine coordinate system on S,.

(3) v is the potential of g¢ with respect to {6'}, that is,

g;;(0) = 9:9;4(0).
(4) Set the g-expectation of Fi(x) by n; = EJS[Fi(x)].
— {n;} is the dual coordinate system of {6} w.r.t.. g4.

(5) Set ¢p(n) = Eg%[log, p(=; 0)]
—> ¢(n) is the potential of g¢ with respect to {n;}.

P,(x) : the escort distribution of p(x) and the g-expectation of f(x)
def
Pi@) =p@)’,  Eylf@) = [ £@)Py(e)d

E2[f (z)] : the normalized g-expectation of f(x)
esc P (w)
Blf@) = [ @)y Cde, Zy) = [ p)d

def
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/Proposition 3.6 For S,, the following hold:

(1) (Sg, g2, V) V4M) is a dually flat space.

(2) {6} is a V9©)-affine coordinate system on S,.

(3) v is the potential of g¢ with respect to {6'}, that is,

g;;(0) = 9:9;4(0).
(4) Set the g-expectation of Fi(x) by n; = EJS[Fi(x)].
— {n;} is the dual coordinate system of {6'} w.r.t. g4.

(5) Set ¢p(n) = Eg > [log, p(=; 0)]
—> ¢(n) is the potential of g¢ with respect to {n;}.

—— normalized Tsallis relative entropy (g-relative entropy) ——

DY (p,r) = E; log, p(x) — log, r(x)] (I (—a)-divergence)
1— /p(m)qr(a:)l_qd:c q
— — (1-29) () 4 ]
—omwm " @)
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a-divergence (a = 1 — 2q)

DI (p(a). r(@)) = - | p(a){1og, p(w) — log, r(z)}da

D(~29) induces a non-flat invariant statistical manifold (S,,V(~29), gF').

—— normalized Tsallis relative entropy [l g-relative entropyl]l ———

D (p(x),r(x)) = E; [log, p(x) — log, r(x)]
g

[ p(=)" = T

DY induces a Hessian manifold (flat statistical mfd.) (S,, V4™, g9).

(Sy, V€™ g9) and (S,,V 291, g¥') are 1-conformally equivalent, since

q _
(Dq(pv Q) — ) D(’r',p) — D(zq 1)(7",]?).
Z4(p)
e N
v(x) Normalization of a positive measure

v(x) .
0s. eAsuTe Z,(v) to a probability measure
poOS- prob. measure is NOT a trivial problem.

. /

30/38



4 Geometric divergence and a-divergence

4.1 Review: affine immersions

f: M — R"!: an immersion
&: a local vector field along f

/Deﬁnition 4.1

{f, &} : M — R""! is an affine immersion

det For an arbitrary point p € M,

Tf(p)Rn_H — f*(TpM) D R{sp}

&: a transversal vector field

.

D: the standard flat affine connection on R™*

Dxé = —fu(SX) + T(X)E.

def
f : non-degenerate <= h : non-degenerate

{f,&} : equiaffine E =0
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4.1 Review: affine immersions

p
Proposition 4.2
{f,&} : non-degenerate, =—> (M, V, h) is a statistical manifold,

equiaffine 1—-conformally flat.
o

p
Proposition 4.3
(M,V,h) : a simply connected statistical manifold
1-conformally flat

— There exists {f, £} which realizes (M, V,h) in R""!.

-

Fundamental structural equations for affine immersions

Gauss: R(X,Y)Z =h(Y,Z)SX — h(X,Z2)SY
Codazzi: (Vxh)(Y,Z) + m7(X)h(Y, Z)
= (Vyh)(X, Z) + 7(Y)h(X, Z)
(VxS)(Y) — 7(X)SY = (VyS)(X) —1(Y)SX

Ricci: h(X,SY)—-h(Y,S5X)=(VxT)(Y) — (Vy7)(X)
f : non-degenerate &L h non-degenerate
def

{f,&} : equiaffine <~ 7=0
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4.2 Conormal maps and geometric divergences

4.2 Conormal maps and geometric divergences

{f,&} : nondegenerate, equiaffine
R,.. : the dual space of R"*

(, ) : the canonical pairing of R, ; and R™".

-

v: M — R, is the conormal map of {f, £}

<d:ef> <v(p)7€p> = 1,

(v(p), f+Xp) = 0

-

We define a function on M X M by
p(p,r) = (v(r), f(p) — f(r)).

p is called the geometric divergence on M.

The geometric divergence is independent of realization of (M, V,h).

cf. affine support function:

p: R xM — R

p(x,r) = (v(r),z — f(r))
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4.2 Conormal maps and geometric divergences

(M,V,h) : a simply connected flat statistical manifold.
(= (M,h,V,V*) is a dually flat space.)

—> dv : afunction on M (potential function) such that
—> {f,&} : an affine immersion (graph immersion)

0! 0

o' : .
I (9571) — 9n , &= 0
Y (6) 1

v : the conormal map of {f, £},

2

00007

oY
Lk

v:(_nh"'v_nnvl) N =

Since ¢(r) = > n;(r)0'(r) — ¥ (r), we have
p(p,r) = (v(r), f(p) ~ f(r)) |
—> ni(r)6(p) + ¥(p) + > _ mi(r)6'(r) — (r)

Y(p) + o(r) — > _ni(r)6°(p)
= D(pl|r)
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4.3 Realization of q-exponential family and a-divergence

4.3 Realization of g-exponential family and a-divergence

Sy = {p(z;0) |p(x;0) = exp, [> i, 6"Fi(x) — ¥ (0)]} : g-exponential
family

- the Hessian manifold (S,, V¢4, g9) N
{f,&} : an affine immersion (graph immersion)
)l |l
Y(0) 1
v : the conormal map of {f, &}, o
U = (—"71,---a—77n,1) ni = 90 o EZSC [Fz(m)]

pq.(p(0),p(0)) : the geometric divergence of (S, vied, g9)

pq(p(0),p(0") = (v(p(0)), f(p(0)) — f(p(F)))
E 5o log,p(8') — log, p(8)]
D(p(0)||p(6))
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4.3 Realization of q-exponential family and a-divergence
——— the invariant manifold (S,, V2?91 gF) (a =2g —1) —

{f,€} : an affine immersion

1 B Z
o1 9 £ = K {g + f.grad, (log —q)}
f:li]m— 9" , Zq 9
n —_ . q
0 (6) Z, = /ﬂp(m, 0)dx
vF : the conormal map of {f, £},
Z

oF — ;q(_nl, ceey =TIy 1)

Pf(P(H), p(0’)) : the geometric divergence of (S, Vv (2a-1) gF)
py (p(0),p(0") = (v"(p(8"), f(p(8)) — f(p(6)))

un-normalized 1 ,
( expectation :>) = g Har®) log, p(8) — log, p(0)]
1

= {1 [ poy @y
D=V (p(0)[|p(¢')) = D (p(0)Ilp(6)
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4.3 Realization of q-exponential family and a-divergence

What is the canonical divergence?

(1) If (M, g, V,V*) is a dually flat space, the divergence coincides with
the well-known canonical divergence.

(2) The projection property should be hold.
~ L M at g (i.e. g(%(0),X) =0,"X € T,M)
= D(p,q) = minD(p,r)

¥
1-geod. spray
LY

L]
L2

equidistant hypersphere

- F
- F
»
L]
-
L] '
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Summary I

- g-information geometry ~

S, = {p(x;0)} : a g-exponential family
o (S, V)4, g%) : a Hessian manifold (a flat statistical manifold)
o (S,,V2i=Y g} : an invariant statistical manifold (a = 2qg — 1)
o (S, Vel g9), (S,, VZi~1 gF) are 1-conformally equivalent
| e (S, V(2= gF) is 1-conformally flat

- affine immersions and geometric divergences N
S, = {p(x; 0)} is realized by affine immersions S, — R"*!
o (S, veld, gy is realized by
f=(04...,0",¢(0)T, ¢=(0,...,0,1)T \
pa((6), (8)) = D((8)[1(8") (= EL3n [log, p(8) ~log, p(6)]
o (S,, V2i=1 gF) is realized by
n ~ q Z
F= (0o 0n (@), €= o {6+ fumnd, (105 )}
q
pF(p(8), p(6')) = DE1-V(p(9)||p(6")) (c-divergence)




Affine immersions

Statistical manifolds and generalized conformal structures
Deformed exponential families

Geometric divergences and a-divergences

o

Appendixes
5. GGeneralization of Legendre transformation
6. Quantum analogue of affine differential geometry



5 (Generalization of Legendre transformation
5.1 Centroaffine immersions of codimension two

M: an n-dimensional manifold

f: M — R"?: an immersion

&: a local vector field along f

- N
Definition 5.1

{f,€} : M — R™"?is a centroaffine immersions of codimension two
def

For an arbitrary point p € M,
Cl-'j-‘(:c)Rn—i_2 — f*(T:cM) D R{gcc} D R{f($)}

&: a transversal vector field
o

D: the standard flat affine connection on R"1?

DX.f*Y — .f*(VXY) + h(X7Y)€ + k(Xa Y)fa
Dx¢ = —f.(SX) + 7(X)€ + n(X) f.
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5.1 Centroaffine immersions of codimension two

: the induced connection

: the affine fundamental form

: the transversal connection form
: the affine shape operator

>

H(le tee 9Xn) = det(f*Xla R f*Xna 57 f)
the induced volume element

/

Proposition 5.2
Vx0 =7(X)60

-

/

Definition 5.3
def

f : non-degenerate <—> h : non-degenerate

{f,&} : equiaffine & =0

-

D: the standard flat affine connection on R" 12

DX.f*Y — .f*(VXY) + h(XvY)€ + k(Xa Y)fa
Dx¢ = —f.(SX) + 7(X)E + u(X) .
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5.1 Centroaffine immersions of codimension two

: the induced connection

: the affine fundamental form

: the transversal connection form
: the affine shape operator

na >4

H(le tee 9Xn) = det(f*Xla R f*Xna 57 f)
the induced volume element

/Proposition 5.2
Vx0 =7(X)60

-

p
Definition 5.3 o

f : non-degenerate <—> h : non-degenerate

{f,&} : equiaffine & =0
.

p
Proposition 5.4
{f,€} : M — R""? : non-degenerate, equiaffine
—> (M, V, h) is a statistical manifold, conformally-projectively flat
o

J
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5.2 Dual maps and geometric divergences

5.2 Dual maps and geometric divergences

Rn_|_2 : the dual vector space of Rn—l—z
(, ) : the pairing of R, and R""?

/Deﬁnition 5.5
vo,w: M — Ry, o

def

<v(p)9€p> =1 ('w(p)a €p> = 0,
(v(p), fF(p)) =0 (w(p), f(p)) =1,
<’U(p), .f*Xp> =0 (’w(p), f*Xp> = 0,

- /

We call v the conormal map of {f, &}

If h is non-degenerate
— {v,w} : M — R, s is a centroaffine immersion of codimension

two. We call {v,w} the dual map of {f, &}.

Proposition 5.6
{f,&¢} induces (M,V,h) <  {v,w} induces (M,V* h).
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5.2 Dual maps and geometric divergences

/Deﬁnition 5.5 |
viow: M — R, 5 : the dual map of {f, &}.
(v(p)s &) =1 (w(p), &) =0,
(v(p), f(p)) =0 (w(p), f(p)) =1,
L <’U(p), f*Xp> =0 (w(p), f*Xp> = 0, )

Definition 5.7
p: M X M — R : the geometric divergence

p(p,q) = (v(q), f(p) — f(q))

N J
The geometric divergence p is a contrast function, and this is a special
form of an affine support function.

def
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5.2 Dual maps and geometric divergences

Legendre transformation

Proposition 5.8
(M,g,V,V*) : a dually flat space

{6} : a V-affine coordinate system
{n*} : a V*-affine coordinate system
oY toJo) .
p— - = 1);, — Hz,
a6i " an,
0?1 0%¢ ii ( o 0 ) { 1 (¢=173)
. . — gz], . . — g ’ g - — . .
00907 onion DO’ A, 0 (¢#7),
¥(p) + ¢(p) — > _ 0" (p)ni(p) = 0,
i=1
[(M, V,g) and (M, V*, g) are flat statistical manifolds. j
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5.2 Dual maps and geometric divergences

(o) (9 (7
rlen | elo| —p2 2 |
e | | 96" 90" v

\ 1) \0/ \"0/
v:(_n17°°°7_nn917¢)7 ’UJZ(O,...,O,O,l)

O\ _ )+ 2% () =
(00) Fopgr ) =0 = —m(p) + () = O

(v(p), f(P)) =0 <= Y(p)+ o(p) — ZHi(p)m(p) =0

p(p,q) = (v(q), f(p) — f(g))
= ¥ (p) + ¢(q) — Z 0’ (p)ni(q)
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6 Quantum analogue of affine differential geometry

6.1 Quasi-statistical manifolds

M : a manifold (an open domain in R")

h : a non-degenerate (0, 2)-tensor field on M
V : an affine connection on M

TV(X,Y) =VxY — VyX — [X,Y]: the torsion tensor of V
Definition 6.1
(M,V,h): a quasi-statistical manifold
def
(Vxh)(Y,Z) — (Vyh)(X, Z) = _h(TV(Xa Y), Z)

In addition, if A is a semi-Riemannian metric, then we say that
(M,V,h) is a statistical manifold admitting torsion (SMAT).

p
Definition 6.2
V*: (quasi-) dual connection of V with respect to h

s Xh(Y, Z) = h(VLY, Z) + h(Y, VxZ).

- /

p
Proposition 6.3

The dual connection V* of V 1is torsion free.
N J

We remark that (V*)* # V in general.
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6.1 Quasi-statistical manifolds

/Proposition 6.4 A
If h is symmetric h(X,Y) = h(Y, X)
or skew-symmetric h(X,Y) = —h(Y, X)
— (V*)* =V
N b
4 N
Proposition 6.5
(M,V*,h) : V* is torsion free and dual of V,
h is a non-degenerate (0,2)-tensor field,
—> (M, V,h) is a quasi-statistical manifold.
N b

~

p
Suppose that (M, V, h) is a statistical manifold admitting torsion.

(1) (M,V,h) is a Hessian manifold
—— RV =0 and TV =0
<= (M, h,V,V*) is a dually flat space.

(2) (M,V,h) is a space of distant parallelism
<~ RY =0 and TV #0 (RV' =0, TV =0).

- /
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6.1 Quasi-statistical manifolds

SMAT with the SLD Fisher metric (Kurose 2007)

Herm (d) : the set of all Hermitian matrices of degree d.
S : a space of quantum states

S ={P € Herm (d) | P > 0, traceP = 1}

TpS = Ay N Ay = {X € Herm (d) | traceX = 0}
We denote by X the corresponding vector field of X.
/ N

For P € §, X € A, define wp(X:) (€ Herm (d)) by

X = %(PWP(Y) + wp(X)P)

The matrix w(}\(/ ) is the “symmetric logarithmic derivative”.
N /

A Riemannian metric and an affine connection are defined as follows:

hp(X,Y) = %trace (P(wp(X)wp(Y) + wp(Y)wp(X))) ,

P

The SMAT (S, V,h) is a space of distant parallelism.
(R=R*=0, T* =0, but T # 0)

(vyff) — hp(X,Y)P — %(pr(?) + wp(Y)X).
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6.2 Affine distributions

6.2 Affine distributions

w:TM — R"™: a R""-valued 1-form
£: M — R": a R""'-valued function

/Deﬁnition 6.6

{w, &} is an affine distribution

def For an arbitrary point p € M,

R""' = Image w, ® R{¢.}

&: a transversal vector field
. %

/

N
{f,&}: an affine immersion =— {df,&}: an affine distribution
S J

Xw(Y) w(VXY) + h(Xa Y)€9
X¢ = —w(SX) +1(X)€E.
: an affine connection (TV(X,Y) # 0 in general)
: a (0,2)-tensor field (h(X,Y) # h(Y, X) in general)
: a (1,1)-tensor field
: a 1-form

TS q
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6.2 Affine distributions

Xw(Y) — w(VXY) + h(Xa Y)€9
X¢ = —w(SX) + 17(X)E.
p
w : symmetric L p symmetric

def
w : non-degenerate <= h : non-degenerate

{w, &} : equiaffine LY =0
\_

Symmetry and non-degeneracy of w are independent of &.

/Pr0p~ositi0n 6.7
Set € := w(V) + ¢p&€. Then the induced objects change as follows:

VxY = VxY + h(X,Y)V,
h(X,Y) = ¢h(X,Y),
SX —F(X)V = ¢SX — VxV,
¢7(X) = h(X,V) + do(X) + ¢o7(X).

-

o

p
Proposition 6.8

Image (dw), C Imagew, <=  h: symmetric
Image (d€), C Image w, <~ 71=0

-
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6.2 Affine distributions

/Proposition 6.9
{w, &} : non-degenerate, equiaffine
—> (M, V,h) is a quasi-statistical manifold.
{w, &} : symmetric, non-degenerate, equiaffine
— (M,V,h) is a SMAT.

-

Fundamental structural equations for affine distributions:

Gauss equation:

R(X,Y)Z =h(Y,Z)SX — h(X, Z2)SY,
Codazzi equations:

(Vxh)(Y,Z)+ h(Y, Z)T(X)

_(VYh)(Xa Z) + h(Xa Z)T(Y) — _h(TV(Xa Y)a Z)a
(VxS)(Y) + 7(Y)SX — (Vy§)(X) — 7(X)SY = —S(TV(X,Y)),
Ricci equation:
h(X,SY) — (Vx7T)(Y) — h(Y,8X) + (Vy7)(X) = 7(TV(X,Y)).
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6.2 Affine distributions

SMAT with the SLD Fisher metric (Kurose 2007)

Herm (d) : the set of all Hermitian matrices of degree d.
S : a space of quantum states

S ={P € Herm (d) | P > 0, traceP = 1}

TpS = Ay N Ay = {X € Herm (d) | traceX = 0}
We denote by X the corresponding vector field of X.

/

For P € §, X € A, define wp(X:) (€ Herm (d)) and £ by

X = %(Pwp(ic’) + wp(X)P), &= —1I,

Then {w, £} is an equiaffine distribution.
o

The induced quantities are given by
— o~ 1 — ~ ~ —
hp(X,Y) = Etrace (P(wp(X)wp(Y) -+ wp(Y)wp(X))> ,

~ — o~ 1 ~ ~
(VX:Y)Z) = hp(X,Y)P — _(Xwp(Y) + wp(¥)X).
(R=R*=0, T* = 0, but T # 0)

53/38



6.2 Affine distributions

SMAT with the real RLD Fisher metrics (Kurose 2007)

Herm (d) : the set of all Hermitian matrices of degree d.
S : a space of quantum states

S ={P € Herm (d) | P > 0, traceP = 1}
TpS = Ay Ay = {X € Herm (d) | traceX = 0}

/ForPES, X e A, set

— 1
wp(X) = J(PT'X + XP™Y),  &=-I

Then {w, £} is an equiaffine distribution.
o

The induced quantities are given by

~ - 1
hp(X,Y) = Etrace(P_l(XY +Y X)),

_ L 1
wp(VzY) = hp(X,Y)Ia— (PT'XP'Y + YPTIX P,

(R=R*=0, T* =0, but T # 0)
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6.3 Triviality of quasi-statistical manifolds

6.3 Triviality of quasi-statistical manifolds

(M,V,h): a quasi-statistical manifold

V is of (weak) constant curvature

4 There exists a positive function k such that

RY(X,Y)Z = k{h(Y, Z)X — h(X, Z)Y}

Theorem 1

{w, €} : a non-degenerate, equiaffine distribution.
(M,V,h) : the induced quasi-statistical manifold of {w, &},
\Y : weak constant curvature

R*(X,Y) := kh(X,Y), VLY := VxY + d(logk)(X)Y

— (M, V*,h*) is a statistical manifold of constant curvature 1.

This theorem implies that a constant curvature quasi-statistical
manifold is easily obtained from a standard statistical manifold.

On the other hand, in the case R = 0, (i.e., (M, V,h) is a space of

distant parallelism), we can define non-trivial quasi-statistical mani-
folds.
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6.3 Triviality of quasi-statistical manifolds

Theorem 1

{w, &} : a non-degenerate, equiaffine distribution.
(M,V,h) : the induced quasi-statistical manifold of {w, £},
\Y4 : weak constant curvature

h*(X,Y) := kh(X,Y), V%Y := VxY + d(logk)(X)Y

— (M, V*, h¥) is a statistical manifold of constant curvature 1.

Fundamental structural equations for affine distributions:

Gauss equation:

R(X,Y)Z =h(Y,Z)SX — h(X, Z2)SY,
Codazzi equations:

(Vxh)(Y,Z) + h(Y, Z)7(X)

_(VYh)(Xa Z) + h(Xa Z)T(Y) — _h(TV(Xa Y)a Z)a
(VxS)(Y) +7(Y)SX — (VyS)(X) — 7(X)SY = —S(TY(X,Y)),
Ricci equation:
h(X,SY) — (Vx7T)(Y) — h(Y,8X) + (Vy7)(X) = 7(TV(X,Y)).
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6.4 Conormal maps and geometric quasi-divergences

6.4 Conormal maps and geometric quasi-divergences

{w, &} : nondegenerate, equiaffine
R, .. : the dual space of R""!
: the canonical pairing of R,,.; and R™.
(5 ) p g +
B

v: M — R, is the conormal map of {w, £}

& (v(p), &) = 1,

(v(p), w(Xp)) = 0

- /

We define a function on TM X M by
p(X,q) = (v(q), w(X)).

p is called the geometric quasi-divergence on M.

(1) If w is symmetric, p is called the geometric pre-divergence on M.

(2) A SMAT or a quasi statistical manifold can be induced from these
divergences.

(3) More generally, a quasi statistical manifold can be induced from a
pre-contrast function.
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6.5 Generalized projection theorem

6.5 (eneralized projection theorem

Theorem 6.10
{w,¢} : an affine distribution to R™

(M,V,h) : a quast statistical manifold induced from {w, £}
with the quasi-dual connection V*
p : the geometric quasi-divergence on (M, V,h)
N C M : a submanifold in M
p€ M\N, q€&€N
~ : the V* geodesic connecting p and q
Then

v L N at q (i.e. h(%(0),V) =0,"V € T,N) <= p(V,~(t)) =0

p

V-geodesic \ <> p(V,y(t)=0 "V e I N

e ’%‘_% - Remark 6.11
i‘?’:j‘{##* h(V,%(0)) # 0 in general

58/38



6.5 Generalized projection theorem

data

The maximum likelihood
estimator is the (-1)-geodesic
projection of data

(-1)-geodesic

——

estimator

1 &
. KL ~ 1 .
min D (p(7), p(w)) <= min { —= ) logp(:vz-,u)>

N
—> Z s(x;;u) = 0 estimating equation
i=1

0

u’

s'(x;u) log p(x; u) : score function for u
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6.5 Generalized projection theorem

- Statistical manifolds N

Affine immersions, C Dual connections

e divergences, contrast functions

o exponential families, dually flat spaces
J

—— Statistical manifolds admitting torsion (SMAT) ——

Affine distributions|] C Dwual connections

e pre-divergence, pre-contrast functions

e quantum IG, non-conservative estimation
N J

p Quasi statistical manifolds N

Affine distributions] C Quasi-dual connections

e quasi-divergence, quasi-contrast functions

o symplectic structures, special Kahler manifolds
J
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Summary I

- g-information geometry ~

S, = {p(x;0)} : a g-exponential family
o (S, V)4, g%) : a Hessian manifold (a flat statistical manifold)
o (S,,V2i=Y g} : an invariant statistical manifold (a = 2qg — 1)
o (S, Vel g9), (S,, VZi~1 gF) are 1-conformally equivalent
| e (S, V(2= gF) is 1-conformally flat

- affine immersions and geometric divergences N
S, = {p(x; 0)} is realized by affine immersions S, — R"*!
o (S, veld, gy is realized by
f=(04...,0",¢(0)T, ¢=(0,...,0,1)T \
pa((6), (8)) = D((8)[1(8") (= EL3n [log, p(8) ~log, p(6)]
o (S,, V2i=1 gF) is realized by
n ~ q Z
F= (0o 0n (@), €= o {6+ fumnd, (105 )}
q
pF(p(8), p(6')) = DE1-V(p(9)||p(6")) (c-divergence)




Statistical inferences I

- Dually flat spaces

(x1,T2,...,xN): IN-independent observations

L(0) = p(x1;0)p(x2;6) - - - p(nN; 6)
—> Maximum likelihood estimator, dually flat spaces

N

Generalized conformal geometry

(x1,T2,...,xN): IN-observations, but they are correlated.

Lqy(0) = p(2150) ®q p(x2;0) Qg -+ - Qq P(zN; 0)

—> anomalous statistical physics, sequential estimations
generalized conformally flat statistical manifolds

\

- Non-integrable geometry

(x1,X2,...,xn): N-independent events, but we cannot observe.
Likelihood functions are complicated
—> non-conservative estimator,

statistical manifolds admitting torsion

N




