Superadditivity of Fisher Information: Classical vs. Quantum

Shunlong Luo

Academy of Mathematics and Systems Science Chinese Academy of Sciences Iuosl@amt.ac.cn

Information Geometry and its Applications IV in honor of Shun-Ichi Amari on the Occasion of His 80th Birthday June 13-17, 2016, Liblice, Czech

- a conjecture of more than 50 years old
- strange difference between classical and quantum statistics
- Implications for clock synchronization

Outline

- 1. Classical Fisher Information
- 2. Superadditivity in Classical Case
- 3. Quantum Fisher Information
- 4. Superadditivity in Quantum Case
- 5. Weak Superadditivity in Quantum Case
- 6. Physical Implications of Superadditivity
- 7. Problems

• Fisher, 1922, 1925

Fisher information of a probability density $p(x) = p(x_1, x_2, \dots, x_n)$ (with respect to the location parameters) is defined as

$$I_{\mathrm{F}}(p) = 4 \int_{\mathbb{R}^n} |\nabla \sqrt{p(x)}|^2 dx.$$

 ∇ : gradient

 $|\cdot|$: Euclidean norm in R^n

More generally, the Fisher information matrix of a parametric densities $p_{\theta}(x)$ on R^n with parameter $\theta = (\theta_1, \theta_2, \cdots, \theta_m) \in R^m$ is the $m \times m$ matrix

$$\mathsf{I}_F(p_\theta) = (\mathit{I}_{ij})$$

defined as

$$I_{ij} = 4 \int_{\mathbb{R}^n} \frac{\partial \sqrt{p_{\theta}(x)}}{\partial \theta_i} \frac{\partial \sqrt{p_{\theta}(x)}}{\partial \theta_j} dx$$

with $i, j = 1, 2, \cdots, m$.

In particular, if n = m and $p_{\theta}(x) = p(x - \theta)$ is a translation family, then $\mathbf{I}_F(p_{\theta}) = (I_{ij})$ is independent of the parameter θ , and

$$I_{ij} = 4 \int_{\mathbb{R}^n} \frac{\partial \sqrt{p(x)}}{\partial x_i} \frac{\partial \sqrt{p(x)}}{\partial x_j} dx.$$

In this case, we may simply denote $I_{\rm F}(p_{\theta})$ by $I_{\rm F}(p)$. We see that

$$I_{\mathrm{F}}(p) = \mathrm{tr} \mathbf{I}_{\mathrm{F}}(p).$$

Statistical Origin of Fisher Information

Data: *n* samples $x_1, x_2, \dots, x_n \sim p_{\theta}(x)$. Aim: Estimate the parameter θ .

• Cramér-Rao: Unbiased estimate $\hat{\theta}$

$$\Delta \widehat{\theta} \geq rac{1}{nl(p_{ heta})}.$$

• Maximum Likelihood: $\widehat{\theta}(x_1, \cdots, x_n)$

$$\sqrt{n}(\widehat{\theta} - \theta) \rightarrow N(0, 1/I(p_{\theta}))$$

Fisher Information vs. Shannon Entropy

- For a probability density p, its Shannon entropy is $S(p) = -\int p(x) \ln p(x) dx$.
- de Bruijin identity:

$$\left. \frac{\partial}{\partial t} S(p * g_t) \right|_{t=0} = \frac{1}{2} I(p),$$

where $g_t(x) = \frac{1}{\sqrt{2\pi t}} e^{-x^2/2t}.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

2. Superadditivity in Classical Case

Basic Properties of Fisher Information (a). Fisher information is convex:

$$I_{\mathrm{F}}(\lambda_1 p_1 + \lambda_2 p_2) \leq \lambda_1 I_{\mathrm{F}}(p_1) + \lambda_2 I_{\mathrm{F}}(p_2).$$

Here p_1 and p_2 are two probability densities and $\lambda_1 + \lambda_2 = 1, \ \lambda_j \ge 0, \ j = 1, 2.$

Informational meaning: Mixing decreases information.

(b). Fisher information is additive:

$$I_{\mathrm{F}}(p_1\otimes p_2)=I_{\mathrm{F}}(p_1)+I_{\mathrm{F}}(p_2).$$

Here p_1 and p_2 are two probability densities, and $p_1 \otimes p_2(x, y) := p_1(x)p_2(y)$ is the independent product density (which is a kind of tensor product).

< □ > < (四 > < (回 >) < (u = 1) < (

(c). Fisher information is invariant under location translation, that is, for any fixed $y \in R^n$, if we put $p_y(x) := p(x - y)$, then $l_{\rm F}(p_y) = l_{\rm F}(p)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

(d). Fisher information $I_{\rm F}(p)$ is superadditive: $I_{\rm F}(p) \ge I_{\rm F}(p_1) + I_{\rm F}(p_2).$ Here $p(x) = p(x_1, x_2)$ is a bivariate density with marginal densities p_1 and p_2 .

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三日 ● のへで

1925: Fisher information was introduced.1991: Superadditivity was discovered and proved by Carlen.

Statistical meaning:

When a composite system is decomposed into two subsystems, the correlation between them is missing, and thus the Fisher information decreases.

•Analytical Proof E. A. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities *Journal of Functional Analysis*, 101 (1991), 194-211.

Statistical Proof

A. Kagan and Z. Landsman Statistical meaning of Carlen's superadditivity of the Fisher information *Statist. Probab. Lett.* 32 (1997), 175-179.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

- Analogy between Classical and Quantum:
- •Probability $p_{\theta} \longrightarrow$ Density operator (non-negative matrix with unit trace) ρ_{θ}

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

•Integral $\int \longrightarrow$ Trace operation tr

Quantum Mechanics as a Framework of Calculating Probabilities, a Statistical Theory

E. Schrödinger

Quantum mechanics began with statistics, and will end with statistics.

- In classical statistics, probabilities are given a priori: (Ω, \mathcal{F}, P) .
- In quantum physics, probabilities are generated from the pairing:
 (density operators ρ, observable H)

$$p_i = \mathrm{tr} \rho E_i$$

where $H = \sum_{i} \lambda_{i} E_{i}$ is the spectral decomposition of the self-adjoint operator H.

• H. Araki, M. M. Yanase Measurement of Quantum Mechanical Operators Phys. Rev. 120, 1960 Wigner-Araki-Yanase Theorem The existence of a conservation law imposes limitation on the measurement of an observable. An operator which does not commute with a conserved quantity cannot be measured exactly.

• E. P. Wigner and M. M. Yanase Information content of distribution Proc. Nat. Acad. Sci., 49, 910-918 (1963) Skew information

$$I(\rho, H) = -\frac{1}{2} \operatorname{tr}[\sqrt{\rho}, H]^2$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

where

- ρ : density operator
- H: any self-adjoint operator
- $[\cdot,\cdot]:$ commutator

• Wigner-Yanase-Dyson information $I_{\alpha}(\rho, H) = -\frac{1}{2} tr[\rho^{\alpha}, H][\rho^{1-\alpha}, H]$ where $\alpha \in (0, 1)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Basic Properties of Skew Information

- I(ρ, H) ≤ Δ_ρH := trρH² (trρH)².
 Invariance: I(UρU[†], H) = I(ρ, H) if unitary U satisfying UH = HU.
- Additivity

$$I(
ho_1 \otimes
ho_2, H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2)$$

= $I(
ho_1, H_1) + I(
ho_2, H_2).$

Convexity

 $I(\lambda_1\rho_1+\lambda_2\rho_2,H) \leq \lambda_1I(\rho_1,H)+\lambda_2I(\rho_2,H).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Four Interpretations of Skew Information

• As information content of ρ with respect to observable not commuting with H

Wigner and Yanase, 1963

• As a measure of non-commutativity between ρ and H

Connes, Stormer, J. Func. Anal. 1978

• As a kind of quantum Fisher information

D. Petz, H. Hasegawa, On the Riemannian metric of α -entropies of density matrices, Lett. Math. Phys. 1996

S. Luo Phys. Rev. Lett. 2003 IEEE Trans. Inform. Theory, 2004 Proc. Amer. Math. Soc. 2004 • As the quantum uncertainty of H in the state ρ

《曰》 《聞》 《臣》 《臣》 三臣

S. Luo, Phys. Rev. A, 2005, 2006

Skew Information as Quantum Fisher Information

Generalizing classical Fisher information

$$I_{F}(p_{\theta}) := 4 \int \left(\frac{\partial \sqrt{p_{\theta}(x)}}{\partial \theta}\right)^{2} dx$$

to the quantum scenario, we may define

$$I_{F}(\rho_{\theta}) := 4 \mathrm{tr} \left(\frac{\partial \sqrt{\rho_{\theta}}}{\partial \theta} \right)^{2}$$

as a kind of quantum Fisher information. Here ρ_{θ} is a family of density operators. In particular, if ρ_{θ} satisfies the Landau-von Neumann equation

$$i\frac{\partial\rho_{\theta}}{\partial\theta} = [H,\rho_{\theta}], \qquad \rho_{0} = \rho$$

then

$$I_F(\rho_{\theta}) = -4 \mathrm{tr}[\rho^{1/2}, H]^2 = 8I(\rho, H)$$

(日) (四) (코) (코) (코) (코)

S. Luo, Phys. Rev. Lett. 2003

Conjecture: For bipartite density operator ρ , $I_{\alpha}(\rho, H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2) \ge I_{\alpha}(\rho_1, H_1) + I_{\alpha}(\rho_2, H_2).$ Here

- $ho_1 = {
 m tr}_2
 ho, \
 ho_2 = {
 m tr}_1
 ho$: marginals of ho
- H_1, H_2 : selfadjoint operators over subsystems
- 1: identity operator
- \otimes : tensor product of operators

This conjecture was reviewed by Lieb. The only non-trivial confirmed case is for pure states with $\alpha = \frac{1}{2}$.

Wigner-Yanase, 1963: Necessary requirement Lieb, 1973: Absolute requirement

Disproof F. Hansen, Journal of Statistical Physics, 2007

Numerical counterexample! Counterintuitive! Surprising!

L. Cai, N. Li, S. Luo Journal of Physics A, 2008

A Simple Counterexample. Let n > 2 and take

$$\rho = \frac{1}{n} \begin{pmatrix} n-2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, H_1 = H_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Then

 $I(\rho, H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2) < I(\rho_1, H_1) + I(\rho_2, H_2)$

for large *n*.

Partial Results S. Luo, Journal of Statistical Physics, 2007

• Let $H = H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2$. If $\rho = |\Psi\rangle\langle\Psi|$ is a pure state, then superadditivity holds, that is

 $I_{\alpha}(\rho, H) \geq I_{\alpha}(\rho_1, H_1) + I_{\alpha}(\rho_2, H_2).$

• Let $H = H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2$, and ρ be a diagonal density matrix. Then superadditivity holds, that is

$$I_{\alpha}(\rho, H) \geq I_{\alpha}(\rho_1, H_1) + I_{\alpha}(\rho_2, H_2).$$

Partial Results S. Luo and Q. Zhang Journal of Statistical Physics, 2008

• For any classical-quantum state, the superadditivity holds.

Tripartite case R. Seiringer Lett. Math. Phys. 2007

Failure of superadditivity of the Wigner-Yanase skew information for tripartite pure states. The following inequality may be violated by certain pure states:

$$\begin{split} &I_{\alpha}(\rho,H) \geq I_{\alpha}(\rho_{1},H_{1}) + I_{\alpha}(\rho_{2},H_{2}) + I_{\alpha}(\rho_{3},H_{3})\\ &\text{where } \rho = |\Psi_{123}\rangle \langle \Psi_{123}|,\\ &H = H_{1} \otimes \mathbf{1}_{2} \otimes \mathbf{1}_{3} + \mathbf{1}_{1} \otimes H_{2} \otimes \mathbf{1}_{3} + \mathbf{1}_{1} \otimes \mathbf{1}_{2} \otimes H_{3}. \end{split}$$

5. Weak Superadditivity in Quantum Case

• Though neither

 $I(\rho, H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2) \geq I(\rho_1, H_1) + I(\rho_2, H_2)$

nor

$$I(\rho, H_1 \otimes \mathbf{1} - \mathbf{1} \otimes H_2) \geq I(\rho_1, H_1) + I(\rho_2, H_2)$$

is always true, their sum is true:

 $I(\rho, H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2) + I(\rho, H_1 \otimes \mathbf{1} - \mathbf{1} \otimes H_2)$

$$\geq 2\Big(I(\rho_1,H_1)+I(\rho_2,H_2)\Big).$$

• It holds that

$I(\rho, H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2) \geq \frac{1}{2} \Big(I(\rho_1, H_1) + I(\rho_2, H_2) \Big).$

6. Physical Implications of Superadditivity: Clock Synchronization

• Classical clock: (p, Q) $(Q = -i\frac{d}{dx}$ is the moment observable)

$$p_t(x) = e^{-itQ}p(x).$$

Quality: classical Fisher information $I_F(p)$. • Quantum clock: (ρ, H)

$$\rho_t = e^{-itH} \rho e^{itH}.$$

Quality: quantum Fisher information $I_{\alpha}(\rho, H)$.

• A quantum clock shared by two parties:

 $(\rho, H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2)$

The violation of the superadditivity means that the sum of the quality of the component clock will be better than the overall quality:

 $I_{\alpha}(\rho_1,H_1)+I_{\alpha}(\rho_2,H_2)>I_{\alpha}(\rho,H_1\otimes \mathbf{1}+\mathbf{1}\otimes H_2).$

• Curious property of quantum clock!

There does not exit nontrivial quantum clocks such that

$$I_{\alpha}(\rho_1, H_1) = I_{\alpha}(\rho_2, H_2) = I_{\alpha}(\rho, H_1 \otimes \mathbf{1} + \mathbf{1} \otimes H_2).$$

Intuition: Otherwise, we could copy quantum

timing information.

- 1. Conditions for superadditivity?
- 2. Intuitive meaning of the failure of superadditivity
- Difference between classical and quantum from the perspective of Fisher information
 Quantum logarithmic Sobolev
- inequalities?

Thank you!

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで