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1. Statistical manifold and embedding
of statistical manifolds

Definition. (Lauritzen, 1987) A statistical
manifold (M, g, T ) is a manifold M equipped
with a Riemannian metric g and a 3-symmetric
tensor T .

• We assume here that dimM <∞.

Examples.
• Statistical model (M, g,T)

(1) g(ξ;V1, V2) = Ep(·;ξ)(
∂ log p

∂V1

∂ log p

∂V2
),



(2)

T(ξ;V1, V1, V1) = Ep(·;ξ)(
∂ log p

∂V1

∂ log p

∂V2

∂ log p

∂V3
).

• Manifolds (M,ρ) where ρ ∈ C∞(M ×M) is
a divergence (contrast function). (Eguchi)
(M,ρ) =⇒ (g,∇,∇∗), a torsion-free dualistic
structure.

Remarks 1. (g,∇,∇∗)⇐⇒ (g, T ):

T (A,B,C) := g(∇AB −∇∗AB,C).

2. Why (M, g, T )? : T is “simpler” than
∇.



Lauritzen’s question: some Riemannian manifolds

with a symmetric 3-tensor T might not correspond

to a particular statistical model. If there

exist (Ω, µ) and p : Ω ×M → R conditions

hold, we shall call the function p(x; ξ) a probability

density for g and T . =⇒ Lauritzen question

⇐⇒ the existence question of a probability

density for the tensors g and T on a statistical

manifold (M, g, T ).

Lauritzen’s question leads to the immersion

problem of statistical manifolds.



Definition. An immersion h : (M1, g1, T1)→
(M2, g2, T2) will be called isostatistical, if g1 =
h∗(g2), T1 = h∗(T2).

Lemma. Assume h : (M1, g1, T1)→ (M2, g2, T2)
is an isostatistical immersion. If there exist
Ω and p(x; ξ2) : Ω × M2 → R such that p

is a probability density for g2 and T2 then
h∗(p)(x; ξ1) := p(x;h(ξ1)) is a probability density
for g1 and T1.

• (P+(Ωn), g,T), where #(Ωn) = n, has a
natural probability density p ∈ C∞(Ωn×P+(Ωn)),
p(x; ξ) := ξ(x).



• Let g0 =
∑
dx2
i ∈ S

2T ∗(Rn
+) be the restriction

of the Euclidean metric,

T ∗ :=
n∑
i=1

2(xi)
−1dx3

i ∈ S
3T ∗(Rn

+).

π1/2 : P+(Ωn) → Rn
+

ξ =
n∑
i=1

p(i; ξ) δi 7→ 2
n∑
i=1

√
p(i; ξ) ei,

is a statistical embedding

π1/2(g0) = g, π1/2(T ∗) = T.



Main Theorem (2005/2016) Any smooth

(C1 resp.) compact statistical manifold (M, g, T )

(possibly with boundary) admits an isostatistical

embedding into the statistical manifold (P+(ΩN), g,T)

for some finite number N . Any finite dimensional

noncompact statistical manifold (M, g, T ) admits

an embedding I into the space P+(ΩN+) of

all positive probability measures on the set

N+ of all natural numbers such that g is

equal to the Fisher metric defined on I(M)

and T is equal to the Amari-Chentsov tensor

on I(M).



Corollaries

- Any statistical structure on a manifold is

induced from the canonical structure on a

statistical model.

- A new proof of Matumoto’s theorem asserting

that any statistical manifold is generated by

a divergence function. Hence α-geodesics

can be described in terms of gradient flow

of relative entropy (Nihat Ay).



2. Obstruction to the existence of an

isostatistical immersion

Definition (Le2007) Let K(M, e) denote the

category of statistical manifolds M , e - embeddings.

A functor of K(M, e) is called a monotone

invariant of statistical manifolds.

• Any monotone invariant is an invariant of

statistical manifolds.



• Let f : (M1, g1, T1) → (M2, g2, T2) be a

statistical immersion. Then ∀ x ∈M1

Df : TxM1 → Tf(x)M2

is an isostatistical embedding.

• A statistical manifold (Rm, g, T ) is called

a linear statistical manifold, if g and T are

constant tensors.

• Functors of the subcategory Kl(M, e) of

linear statistical manifolds will be called linear

monotone invariants.



Given a linear statistical manifold M = (Rn, g, T )

we set

M3(T ) := max
|x|=1,|y|=1,|z|=1

T (x, y, z),

M2(T ) := max
|x|=1,|y|=1

T (x, y, y),

M1(T ) := max
|x|=1

T (x, x, x).

Clearly we have

0 ≤M1(T ) ≤M2(T ) ≤M3(T ).



Proposition 1. The comassesMi, i ∈ [1,3],
are nonnegative linear monotone invariants,
which vanish if and only if T = 0.

M1(M) := sup
x∈M

M1(T (x)).

Proposition 2 The comassM1(M) is a nonnegative
monotone invariant, which vanishes if and
only if T = 0.

Proposition 3. A statistical line (R, g0, T )
can be embedded into a linear statistical manifold
(RN , g0, T

′), if and only ifM1(T ) ≤M1(T ′).



• Let (Γ2, g,T) be the Gaussian model.

p(x;µ, σ) =
1√

2π σ
exp(

−(x− µ)2

2σ2
), x ∈ R.

g(
∂

∂µ
,
∂

∂µ
) =

1

σ2
, g(

∂

∂µ
,
∂

∂σ
) = 0,

g(
∂

∂σ
,
∂

∂σ
) =

2

σ2
.

T(
∂

∂µ
,
∂

∂µ
,
∂

∂µ
) = 0 = T(

∂

∂µ
,
∂

∂σ
,
∂

∂σ
),

T(
∂

∂µ
,
∂

∂µ
,
∂

∂σ
) =

2

σ3
, T(

∂

∂σ
,
∂

∂σ
,
∂

∂σ
) =

8

σ3
.



M1(R2(µ, σ)) <∞.

M1(P+(ΩN), g,T) =∞.

Proposition 4. The statistical manifold

(P+(ΩN), g,T) cannot be embedded into the

Cartesian product of m copies of the normal

Gaussian statistical manifold (Γ2, g,T) for any

N ≥ 4 and finite m.



3. Outline the proof of the existence of

a isostatistical embedding

Step 1. Prove the existence of an isostatistical

immersion.

Step 2. Modify the obtained immersion to

get an embedding.

Step 1.

T0 :=
m∑
i=1

dx3
i ∈ S

3(T ∗Rn).



Proposition 1a Let (Mm, g, T ) be compact.

Then there exist numbers N ∈ N+ and A > 0

and a smooth (C1 resp. ) immersion

f : (Mm, g, T )→ (RN , g0, A · T0) s.t.

f∗(g0) = g and f∗(A · T0) = T .

Nash’s embedding theorem. Any smooth

(resp. C1) Riemannian manifold (Mn, g) can

be isometrically embedded into (RN(n), g0)

for some N(n).



Gromov’s immersion theorem. Suppose

that T ∈ Γ(S3T ∗Mm). There exists a smooth

immersion f : Mm → RN1(m) such that

f∗(T0) = T .

Lemma 1b. For all N there is a linear

isometric embedding LN : (RN , g0)→ (R2N , g0)

such that L∗N(T0) = 0.

Proposition 1c. For any (Rn, g0, A·T0) there

exists an isostatistical immersion of (Rn, g0, A·
T0) into (P+([4n]), g,T).



• U(Ā, r) - the ball of radius r in the sphere(S3,2
√
n)

of radius 2/
√
n that centered at

(λ(Ā), (2Ā)−1, (2Ā)−1, (2Ā)−1) ⊂ (S3,2
√
n).

Lemma 1d. For A > 0 there exist Ā >

0 that depends only on n and A, 0 < r

arbitrarily small and an isostatistical immersion

h from (Rn, g0, A·T0) into (P+([4n]), g,T) s.t.

h(Rn, g0, A·T0) ⊂ U(Ā, r)×n times ×U(Ā, r).



Lemma 1e. There exist a positive number

Ā = Ā(n,A) and an embedded torus T2 in

U(Ā, r) which is provided with a unit vector

field V on T2 such that T ∗(V, V, V ) = A.

• We reduce the existence of an immersion

of a noncompact of (Mm, g, T ) into (P+(N+)

satisfying the condition of the Main Theorem

to Case I, using partition of unity and a Nash’s

trick.



Step 2. To prove the Main Theorem we

repeat the proof of the existence of isostatistical

immersion, replacing the Nash immersion theorem

by the Nash embedding theorem.

The proof is reduced to the proof of the

existence of an isostatistical immersion of

a bounded statistical interval ([0, R], dt2, A ·
dt3) into a torus T2 of a small domain in

(S7
2/
√
n,+

, g, T ∗) ⊂ (R8, g0, T
∗). Detail will be

in our book “Information Geometry”.



4. Final remarks and related problems

•We can replace the compactness of (M, g, T )

in the Main Theorem by the boundedness of

M3(M, g, T ).

Problem. Find a general setting of differentiable

stratified statistical manifolds that are suitable

for parameter estimation problems and gradient

flow methods.



Motivations:

- S. Amari, Information geometry & Appli-

cations, Chapter 12 Natural Gradient Learning

and Its Dynamics in Singular Regions,

-D. Geiger, C. Meek, B. Sturmfels, On the

toric algebra of graphical models, The Annals

of Statistics (2006),

- J. Rauh, T. Kahle, N. Ay, Support sets

in exponential families and oriented matroid

theory, International Journal of Approximate

Reasoning (2011).



How to do? - Apply general Grothendieck

abstract ideas in algebraic geometry to differen-

tial geometry.

- A. Navarro González and J.B. Sancho de

Salas, C∞-differentiable spaces, volume 1824

of Lecture Notes in Mathematics, appeared

in 2003 (excellent for general finite dimension

setting).

- H. V. Lê, P. Somberg and J. Vanžura,

Poisson smooth structures on stratified symplectic

spaces, Springer Proceeding in Mathematics

and Statistics, Volume 98, (2015), chapter

7, p. 181-204.



- H.V. Lê, P. Somberg, and J. Vanžura, Smooth

structures on pseudomanifolds with isolated

conical singularities. Acta Math. Vietnam.,

38(1):33-54, 2013.

Problem 1. How to put compatible statistical

(geometric) structures on differentiable stratified

manifolds?

- Mather (1973), Cheeger (1979-1983), Melrose

(1992) etc. proposed different frameworks

of singular Riemannian manifolds.



- We have different frameworks for symplectic

singular spaces.

- My thesis: we need to focus and pose the

condition on the inverse of the Fisher metric,

also called the covariance matrix. The covariance

matrix is smoothly extended to the boundary

of P(Ωn) provided with the canonical smooth

structure. Hence the gradient flow is well-

behaved.



Problem 2. How far we can extend the setting

by Navarro González and Sancho de Salas to

nondiscrete sample spaces Ω but finite (or

infinite) dimensional parameter space. (Kriegl-

Michor?)

THANK YOU !


