Information Theory on Convex sets

In celebration of Prof. Shun'ichi Amari's 80 years birthday

Peter Harremoës
Copenhagen Business College

June 2016

Outline

- Introduction.
- Convex sets and decompositions into extreme points.
- Spectral convex sets.
- Bregman divergences for convex optimization.
- Sufficiency and locality.
- Reversibility.

Some major questions

- Is information theory mainly a theory about sequenses?
- Is it possible to apply thermodynamic ideas to systems without conservation of energy?
- Why do information theoretic concepts appear in statistics, physics and finance?
- How important is the notion of reversibility to our theories?
- Why are complex Hilbert spaces so useful for representations of quantum systems?

Color diagram

Nice but wrong!

Color vision

The human eye senses color using the cones. Rods are not used for color but for periferical vision and night vision.

Human spectral sensitivity to color

Three cone types (ρ, γ, β) correspond roughly to R, G, B.

Primates have three 3 receptors.
Most mammels have 2 color receptors.
Birds and reptiles have 4 color receptors.

Example of state space: Chromaticity diagram

Black body radiation

VGA screen

The state space

Before we do anyting we prepare our system. Let \mathcal{P} denote the set of preparations.
Let p_{0} and p_{1} denote two preparations. For $t \in[0,1]$ we define $(1-t) \cdot p_{0}+t \cdot p_{1}$ as the preparation obtained by preparing p_{0} with probability $1-t$ and t with probability t .
A measurement m is defined as an affine mapping of the set of preparations into a set of probability measures on a measurable space.
Let \mathcal{M} denote a set of feasible measurements.
The state space \mathcal{S} is defined as the set of preparations modulo measurements. Thus, if p_{1} and p_{2} are preparations then they represent the same state if

$$
m\left(p_{1}\right)=m\left(p_{2}\right)
$$

for any $m \in \mathcal{M}$.

The state space

Often the state space equals the set of preparations and has the shape of a simplex.
In quantum theory the state space has the shape of the density matrices on a complex Hilbert space.

Example: Bloch sphere

- A qubit can be described by a density matrix of the form

$$
\left(\begin{array}{cc}
\frac{1}{2}+x & y+i z \\
y-i z & \frac{1}{2}-x
\end{array}\right)
$$

where $x^{2}+y^{2}+z^{2} \leq 1 / 4$.

- The pure states are the states on the boundary.
- The mixed states are all interior points of the ball.

Orthogonal states

We say that two states s_{0} and s_{1} are mutually singular if there exists a measurement m with values in $[0,1]$ such that $m\left(s_{0}\right)=0$ and $m\left(s_{1}\right)=1$. We say that s_{0} and s_{1} are orthogonal if there exists a face $F \subseteq S$ such that s_{0} and s_{1} are mutually singular as elements of F.
Lemma Any state that is algebraically interior in the state space can be written as a mixture of two mutually singular states.
Proof Use Borsuk-Ulam theorem from topology. Improved Caratheodory Theorem In a state space of dimension d any state can be written as a mixture of at most $d+1$ orthogonal states.

Entropy of a state

Let s denote a state. Then the entropy of s cen be defined as

$$
H(s)=\inf \left\{-\sum_{i} p_{i} \cdot \ln p_{i}\right\}
$$

where the infimum is taken over all probability vectors $\left(p_{1}, p_{2}, \ldots\right)$ such that there exists states s_{1}, s_{2}, \ldots that are extreme points such that

$$
s=\sum_{i} p_{i} \cdot s_{i}
$$

According to Caratheodory's theorem $H(s) \leq \ln (d+1)$ when the state space has dimension d. We define the entropy of a state space S as $\sup _{s \in S} H(s)$ where the supremum is taken over all states in the state space. We define the spectral dimension of the state space S as

$$
\exp (H(S))-1
$$

Entropic proof

$$
\begin{aligned}
H(s) & =-\sum_{i=0}^{d} p_{i} \cdot \ln \left(p_{i}\right) \\
& =\left(p_{0}+p_{1}\right)\left(-\frac{p_{0}}{p_{0}+p_{1}} \ln \left(\frac{p_{0}}{p_{0}+p_{1}}\right)-\frac{p_{1}}{p_{0}+p_{1}} \ln \left(\frac{p_{1}}{p_{0}+p_{1}}\right)\right) \\
& -\left(p_{0}+p_{1}\right) \ln \left(p_{0}+p_{1}\right)-\sum_{i=2}^{d} p_{i} \cdot \ln \left(p_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
s & =\sum_{i=0}^{d} p_{i} \cdot s_{i} \\
& =\left(p_{0}+p_{1}\right)\left(\frac{p_{0}}{p_{0}+p_{1}} \cdot s_{0}+\frac{p_{1}}{p_{0}+p_{1}} \cdot s_{2}\right)+\sum_{i=2}^{d} p_{i} \cdot s_{i} .
\end{aligned}
$$

Spectral sets

Definition

If $p_{0} \leq p_{1} \leq p_{2} \cdots \leq p_{d}$ and $s=\sum_{i=0}^{d} p_{i} \cdot s_{i}$ where s_{i} are orthogonal we say that the vector p_{0}^{d} is a spectrum of s. We say that s is a spectral state if s has a unique spectrum. We say that the convex compact set C is spectral if all states in C are spectral.

Theorem

For a spectral set the entropic dimension equals the maximal number of orthogonal states minus one.

Proof.

Assume that the maximal number of orthogonal states is n. Any state can be written as a mixture of n states, and a mixture of at n states has entropy at most $\ln (n)$. The uniform distribution on n states has entropy $\ln (n)$.

Examples of spectral sets

- A simplex.
- A d-dimensional ball.
- Density matrices over the real numbers.
- Density matrices over the complex numbers.
- Density matrices over the quaternions.
- Density matrices in Von Neuman algebras.

Actions

Let \mathcal{A} denote a subset of the feasiable measurements \mathcal{M} such that $a \in A$ maps S into a distribution on \mathbb{R} i.e. a random variable.
The elements of A should represent actions like

* The score of a statistical decision.
* The energy extracted by a certain interaction with the system.
* (Minus) the lenth of a codeword of the next encoded input letter using a specific code book.
* The revenue of using a certain portfolio.

Optimization

For each $s \in \mathcal{S}$ we define

$$
\langle a, s\rangle=E[a(s)] .
$$

and

$$
F(s)=\sup _{a \in \mathcal{A}}\langle a, s\rangle
$$

Without loss of generality we may assume that the set of actions \mathcal{A} is closed so that we may assume that there exists $a \in \mathcal{A}$ such that $F(s)=\langle a, s\rangle$ and in this case we say that a is optimal for s. We note that F is convex but F need not be strictly convex.

Regret

Definition

If $F(s)$ is finite the regret of the action a is defined by

$$
D_{F}(s, a)=F(s)-\langle a, s\rangle
$$

The regret D_{F} has the following properties:

- $D_{F}(s, a) \geq 0$ with equality if a is optimal for s.
- If \bar{a} is optimal for the state $\bar{s}=\sum t_{i} \cdot s_{i}$ where $\left(t_{1}, t_{2}, \ldots, t_{\ell}\right)$ is a probability vector then

$$
\sum t_{i} \cdot D_{F}\left(s_{i}, a\right)=\sum t_{i} \cdot D_{F}\left(s_{i}, \bar{a}\right)+D_{F}(\bar{s}, a)
$$

- $\sum t_{i} \cdot D_{F}\left(s_{i}, a\right)$ is minimal if a is optimal for $\bar{s}=\sum t_{i} \cdot s_{i}$.

Bregman divergence

Definition

If $F\left(s_{1}\right)$ is finite the regret of the state s_{2} is defined as

$$
\begin{equation*}
D_{F}\left(s_{1}, s_{2}\right)=\inf _{a} D_{F}\left(s_{1}, a\right) \tag{1}
\end{equation*}
$$

where the infimum is taken over actions a that are optimal for s_{2}.
If the state s_{2} has the unique optimal action a_{2} then

$$
F\left(s_{1}\right)=D_{F}\left(s_{1}, s_{2}\right)+\left\langle a_{2}, s_{1}\right\rangle
$$

so the function F can be reconstructed from D_{F} except for an affine function of s_{1}. The closure of the convex hull of the set of functions $s \rightarrow\langle a, s\rangle$ is uniquely determined by the convex function F.
The regret is called a Bregman divergence if it can be written in the following form

$$
D_{F}\left(s_{1}, s_{2}\right)=F\left(s_{1}\right)-\left(F\left(s_{2}\right)+\left(s_{1}-s_{2}\right) \cdot \nabla F\left(s_{2}\right)\right)
$$

Properties of Bregman divergences

The Bregman divergence has the following properties:

- $d\left(s_{1}, s_{2}\right) \geq 0$
- $d\left(s_{1}, s_{2}\right)=a_{2}\left(s_{1}\right)-a_{2}\left(s_{2}\right)$ where a_{2} denotes the action for which $F\left(s_{2}\right)=a\left(s_{2}\right)$.
- $\sum t_{i} \cdot d\left(s_{i}, \tilde{s}\right)=\sum t_{i} \cdot d\left(s_{i}, \hat{s}\right)+d(\tilde{s}, \hat{s})$ where $\hat{s}=\sum t_{i} \cdot s_{i}$.
- $\sum t_{i} \cdot d\left(s_{i}, \tilde{s}\right)$ is minimal when $\hat{s}=\sum t_{i} \cdot s_{i}$.

Sufficiency

- Let $\left(P_{\theta}\right)$ denote a family of probability measures or a set of quantum states.
- A transformation Φ is said to be sufficient for the family $\left(P_{\theta}\right)$ if there exists a transformation Ψ such that

$$
\Psi\left(\Phi\left(P_{\theta}\right)\right)=P_{\theta} .
$$

- For probability measures the transformations should be given by Markov kernels.
- A divergence d satisfies the sufficiency condition if $d\left(\Phi\left(P_{1}\right), \Phi\left(P_{2}\right)\right)=d\left(P_{1}, P_{2}\right)$ when Φ is sufficient for P_{1}, P_{2}.
- f-divergences are the typical examples of divergences that satisfy the sufficiency condition.
- A Bregman divergence that satisfies sufficiency is proportional to information divergence (Jiao et al. 2014).

Locality

- A Bregman divergence on a convex set is said to local if the following condition is fulfilled.
- For any three states s_{0}, s_{1} and s_{2} such that s_{1} is mutually singular with both s_{1} and s_{2} and for any $t \in[0,1[$ we have that

$$
d\left((1-t) \cdot s_{0}+t \cdot s_{1}\right)=d\left((1-t) \cdot s_{0}+t \cdot s_{2}\right)
$$

- Sufficiency on a set of probability measures implies locality.

Locality (example)

- Sunny weater is predicted with probability p_{0}.
- Cloudy weater is predicted with probability p_{1}.
- Rain is predicted with probability p_{2}.
- The becomes sunny weather.
- The score should only depend on p_{0} and not on p_{1} and p_{2}.

Bregman divergence on spectral sets

Theorem

Let C denote a spectral convex set. If the entropy function has gradients parellel to convex hulls of embedded simplices, then the Bregman divergence generated by the (minus) entropy is local.

Proof.

Assume that $s=(1-p) s_{0}+p s_{1}$ where s_{0} and s_{1} are orthogonal. Then one can make orthogonal decompositions

$$
s_{0}=\sum p_{0 i} \cdot s_{0 i} \text { and } s_{1}=\sum p_{1 j} \cdot s_{1 j}
$$

Then

$$
\begin{aligned}
d_{H}\left(s_{0}, s\right) & =\sum p_{0 i} \cdot \ln \frac{p_{0 i}}{(1-p) p_{0 i}} \\
& =\sum p_{0 i} \cdot \ln \frac{1}{\text { Business Colle }}=\ln \frac{1}{\text { Information Theory on Convex sets }}
\end{aligned}
$$

Entropic dimension 1

Theorem

Let C denote a spectral convex set where any state can be decomposed into two orthogonal states. Then the convex set is a balanced set without one dimensional faces and any Bregman divergence is local.

Locality on spectral sets

Theorem

Let C be a spectral convex set with at least three orthogonal states. If a Bregman divergence d defined on C is local then the Bregman divergence is generated by the entropy times some constant.

Proof Assume that the Bregman divergence is generated by the convex function $f: C \rightarrow \mathbb{R}$. Let K denote the convex hull of a set $s_{0}, s_{1}, \ldots s_{n}$ of singular states. For each s_{i} there exists a simple measurement ψ_{i} on C such that $\psi_{i}\left(s_{j}\right)=\delta_{i, j}$. For $Q \in K$ weak sufficiency implies that

$$
d\left(s_{i}, Q\right)=d\left(s_{i}, \psi_{i}(Q) s_{i}+\left(1-\psi_{i}(Q)\right) s_{i+1}\right)
$$

Proof cont.

Let f_{i} denote the function $f_{i}(x)=d\left(s_{i}, x s_{i}+(1-x) s_{i+1}\right)$ so that $d\left(s_{i}, Q\right)=f_{i}\left(\psi_{i}(Q)\right)$. Let $P=\sum p_{i} s_{i}$ and $Q=\sum q_{i} P_{i}$. Then

$$
\begin{aligned}
d(P, Q) & =\sum p_{i} d\left(s_{i}, Q\right)-\sum p_{i} d\left(s_{i}, P\right) \\
& =\sum p_{i} f_{i}\left(q_{i}\right)-\sum p_{i} f_{i}\left(p_{i}\right)
\end{aligned}
$$

As a function of Q it has minimum when $Q=P$. Assume the f is differentiable.

$$
\frac{\partial}{\partial q_{i}} d(P, Q)=p_{i} f_{i}^{\prime}\left(q_{i}\right)
$$

and

$$
\frac{\partial}{\partial q_{i}} d(P, Q)_{\mid Q=P}=p_{i} \cdot f_{i}^{\prime}\left(p_{i}\right)
$$

Using Lagrange multipliers we get that there exist a constant c_{K} such that $p_{i} \cdot f_{i}^{\prime}\left(p_{i}\right)=c_{K}$.

Proof cont.

Hence $f_{i}^{\prime}\left(p_{i}\right)=\frac{c_{k}}{p_{i}}$ so that $f_{i}\left(p_{i}\right)=c_{k} \cdot \ln \left(p_{i}\right)+m_{i}$ for some constant m_{i}. Therefore

$$
\begin{aligned}
d(P, Q) & =\sum p_{i}\left(f_{i}\left(q_{i}\right)-f_{i}\left(p_{i}\right)\right) \\
& =\sum p_{i}\left(\left(c_{K} \cdot \ln \left(q_{i}\right)+m_{i}\right)-\left(c_{K} \cdot \ln \left(p_{i}\right)+m_{i}\right)\right) \\
& =-c_{K} \cdot \sum p_{i} \ln \frac{p_{i}}{q_{i}} \\
& =-c_{K} \cdot d_{H}(P, Q)
\end{aligned}
$$

Faces of entropic dimension 1

Theorem

Assume that a spectral set has entropic dimension at least 2 and has a local Bregman divergence. Then any face of entropic dimension 1 is isometric to a ball.

Proof.

The Bregman divergence restricted the the face is given by the entropy of the orthogonal decomposition. The gradient is only radial if the face is a ball.

Some applications

- In portfolio theory we want to maximize the revenue. The corresponding Bregman divergence is local if and only if all portfolios are dominated by portfolios corresponding to gambling in the sense of Kelly.
- In thermodynamics the locality condition is satisfied near thermodynamic equilibrium and the amount of extracable energy equals

$$
k T \cdot D\left(P \| P_{e q}\right)
$$

where $P_{\text {eq }}$ is the state of the corresponding equilibrium state.

Conclusion

- Caratheodory's theorem can be improved.
- Information divergence is the only local Bregman divergence on spectral set.
- Information theory only works for spectral sets.
- A complete classification of spectral sets is needed.

