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Peter Harremoës (Copenhagen Business College) Information Theory on Convex sets June 2016 2 / 32



Some major questions

Is information theory mainly a theory about sequenses?
Is it possible to apply thermodynamic ideas to systems without
conservation of energy?
Why do information theoretic concepts appear in statistics, physics
and finance?
How important is the notion of reversibility to our theories?
Why are complex Hilbert spaces so useful for representations of
quantum systems?
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Color diagram

Nice but wrong!
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Color vision

The human eye senses color using the cones. Rods are not used for color
but for periferical vision and night vision.

Primates have three 3 receptors.
Most mammels have 2 color receptors.
Birds and reptiles have 4 color receptors.
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Example of state space: Chromaticity diagram
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Black body radiation
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VGA screen
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The state space

Before we do anyting we prepare our system. Let P denote the set of
preparations.
Let p0 and p1 denote two preparations. For t ∈ [0, 1] we define
(1− t) · p0 + t · p1 as the preparation obtained by preparing p0 with
probability 1− t and t with probability t.
A measurement m is defined as an affine mapping of the set of
preparations into a set of probability measures on a measurable space.
Let M denote a set of feasible measurements.
The state space S is defined as the set of preparations modulo
measurements. Thus, if p1 and p2 are preparations then they represent the
same state if

m (p1) = m (p2)

for any m ∈M.
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The state space

Often the state space equals the set of preparations and has the shape of a
simplex.
In quantum theory the state space has the shape of the density matrices
on a complex Hilbert space.
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Example: Bloch sphere

A qubit can be described by a density matrix of the form(
1
2 + x y + iz
y − iz 1

2 − x

)

where x2 + y2 + z2 ≤ 1/4.
The pure states are the states on the boundary.
The mixed states are all interior points of the ball.
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Orthogonal states

We say that two states s0 and s1 are mutually singular if there exists a
measurement m with values in [0, 1] such that m (s0) = 0 and m (s1) = 1.
We say that s0 and s1 are orthogonal if there exists a face F ⊆ S such that
s0 and s1 are mutually singular as elements of F .
Lemma Any state that is algebraically interior in the state space can be
written as a mixture of two mutually singular states.
Proof Use Borsuk–Ulam theorem from topology.
Improved Caratheodory Theorem In a state space of dimension d
any state can be written as a mixture of at most d + 1 orthogonal states.
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Entropy of a state
Let s denote a state. Then the entropy of s cen be defined as

H (s) = inf
{
−
∑

i
pi · ln pi

}

where the infimum is taken over all probability vectors (p1,p2, . . . ) such
that there exists states s1, s2, . . . that are extreme points such that

s =
∑

i
pi · si .

According to Caratheodory’s theorem H (s) ≤ ln (d + 1) when the state
space has dimension d . We define the entropy of a state space S as
sups∈S H (s) where the supremum is taken over all states in the state
space. We define the spectral dimension of the state space S as

exp (H (S))− 1.
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Entropic proof

H (s) = −
d∑

i=0
pi · ln (pi )

= (p0 + p1)

(
− p0

p0 + p1
ln
( p0

p0 + p1

)
− p1

p0 + p1
ln
( p1

p0 + p1

))

− (p0 + p1) ln (p0 + p1)−
d∑

i=2
pi · ln (pi )

and

s =
d∑

i=0
pi · si

= (p0 + p1)

( p0
p0 + p1

· s0 +
p1

p0 + p1
· s2

)
+

d∑
i=2

pi · si .
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Spectral sets

Definition
If p0 ≤ p1 ≤ p2 · · · ≤ pd and s =

∑d
i=0 pi · si where si are orthogonal we

say that the vector pd
0 is a spectrum of s. We say that s is a spectral state

if s has a unique spectrum. We say that the convex compact set C is
spectral if all states in C are spectral.

Theorem
For a spectral set the entropic dimension equals the maximal number of
orthogonal states minus one.

Proof.
Assume that the maximal number of orthogonal states is n. Any state can
be written as a mixture of n states, and a mixture of at n states has
entropy at most ln (n) . The uniform distribution on n states has entropy
ln (n) .
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Examples of spectral sets

A simplex.
A d-dimensional ball.
Density matrices over the real numbers.
Density matrices over the complex numbers.
Density matrices over the quaternions.
Density matrices in Von Neuman algebras.
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Actions

Let A denote a subset of the feasiable measurements M such that a ∈ A
maps S into a distribution on R i.e. a random variable.
The elements of A should represent actions like
* The score of a statistical decision.
* The energy extracted by a certain interaction with the system.
* (Minus) the lenth of a codeword of the next encoded input letter using a
specific code book.
* The revenue of using a certain portfolio.
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Optimization

For each s ∈ S we define

〈a, s〉 = E [a (s)] .

and
F (s) = sup

a∈A
〈a, s〉 .

Without loss of generality we may assume that the set of actions A is
closed so that we may assume that there exists a ∈ A such that
F (s) = 〈a, s〉 and in this case we say that a is optimal for s. We note that
F is convex but F need not be strictly convex.
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Regret

Definition
If F (s) is finite the regret of the action a is defined by

DF (s, a) = F (s)− 〈a, s〉

The regret DF has the following properties:
DF (s, a) ≥ 0 with equality if a is optimal for s.
If ā is optimal for the state s̄ =

∑
ti · si where (t1, t2, . . . , t`) is a

probability vector then∑
ti ·DF (si , a) =

∑
ti ·DF (si , ā) + DF (s̄, a) .∑

ti ·DF (si , a) is minimal if a is optimal for s̄ =
∑

ti · si .
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Bregman divergence

Definition
If F (s1) is finite the regret of the state s2 is defined as

DF (s1, s2) = inf
a

DF (s1, a) (1)

where the infimum is taken over actions a that are optimal for s2.

If the state s2 has the unique optimal action a2 then

F (s1) = DF (s1, s2) + 〈a2, s1〉

so the function F can be reconstructed from DF except for an affine
function of s1. The closure of the convex hull of the set of functions
s → 〈a, s〉 is uniquely determined by the convex function F .
The regret is called a Bregman divergence if it can be written in the
following form

DF (s1, s2) = F (s1)− (F (s2) + (s1 − s2) · ∇F (s2)) .
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Properties of Bregman divergences

The Bregman divergence has the following properties:
d (s1, s2) ≥ 0
d (s1, s2) = a2 (s1)− a2 (s2) where a2 denotes the action for which
F (s2) = a (s2) .∑

ti · d (si , s̃) =
∑

ti · d (si , ŝ) + d (s̃, ŝ) where ŝ =
∑

ti · si .∑
ti · d (si , s̃) is minimal when ŝ =

∑
ti · si .
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Sufficiency

Let (Pθ) denote a family of probability measures or a set of quantum
states.
A transformation Φ is said to be sufficient for the family (Pθ) if there
exists a transformation Ψ such that

Ψ (Φ (Pθ)) = Pθ.

For probability measures the transformations should be given by
Markov kernels.
A divergence d satisfies the sufficiency condition if
d (Φ (P1) , Φ (P2)) = d (P1, P2) when Φ is sufficient for P1, P2.
f -divergences are the typical examples of divergences that satisfy the
sufficiency condition.
A Bregman divergence that satisfies sufficiency is proportional to
information divergence (Jiao et al. 2014).
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Locality

A Bregman divergence on a convex set is said to local if the following
condition is fulfilled.
For any three states s0, s1 and s2 such that s1 is mutually singular
with both s1 and s2 and for any t ∈ [0, 1[ we have that

d ((1− t) · s0 + t · s1) = d ((1− t) · s0 + t · s2) .

Sufficiency on a set of probability measures implies locality.
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Locality (example)

Sunny weater is predicted with probability p0.
Cloudy weater is predicted with probability p1.
Rain is predicted with probability p2.
The becomes sunny weather.
The score should only depend on p0 and not on p1 and p2.
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Bregman divergence on spectral sets

Theorem
Let C denote a spectral convex set. If the entropy function has gradients
parellel to convex hulls of embedded simplices, then the Bregman
divergence generated by the (minus) entropy is local.

Proof.
Assume that s = (1− p) s0 + ps1 where s0 and s1 are orthogonal. Then
one can make orthogonal decompositions

s0 =
∑

p0i · s0i and s1 =
∑

p1j · s1j

Then

dH (s0, s) =
∑

p0i · ln
p0i

(1− p) p0i

=
∑

p0i · ln
1

1− p = ln 1
1− p

which does not depend on s1 as long as s1 is orthogonal to s0.
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Entropic dimension 1

Theorem
Let C denote a spectral convex set where any state can be decomposed
into two orthogonal states. Then the convex set is a balanced set without
one dimensional faces and any Bregman divergence is local.
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Locality on spectral sets

Theorem
Let C be a spectral convex set with at least three orthogonal states. If a
Bregman divergence d defined on C is local then the Bregman divergence
is generated by the entropy times some constant.

Proof Assume that the Bregman divergence is generated by the convex
function f : C → R. Let K denote the convex hull of a set s0, s1, . . . sn of
singular states. For each si there exists a simple measurement ψi on C
such that ψi (sj) = δi ,j . For Q ∈ K weak sufficiency implies that

d (si , Q) = d (si ,ψi (Q) si + (1−ψi (Q)) si+1) .
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Proof cont.

Let fi denote the function fi (x) = d (si , xsi + (1− x) si+1) so that
d (si , Q) = fi (ψi (Q)) . Let P =

∑
pi si and Q =

∑
qi Pi . Then

d (P, Q) =
∑

pi d (si , Q)−
∑

pi d (si , P)

=
∑

pi fi (qi )−
∑

pi fi (pi )

As a function of Q it has minimum when Q = P. Assume the f is
differentiable.

∂

∂qi
d (P, Q) = pi f ′

i (qi )

and
∂

∂qi
d (P, Q)|Q=P = pi · f ′

i (pi ) .

Using Lagrange multipliers we get that there exist a constant cK such that
pi · f ′

i (pi ) = cK .
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Proof cont.

Hence f ′
i (pi ) =

cK
pi

so that fi (pi ) = ck · ln (pi ) + mi for some constant mi .
Therefore

d (P, Q) =
∑

pi (fi (qi )− fi (pi ))

=
∑

pi ((cK · ln (qi ) + mi )− (cK · ln (pi ) + mi ))

= −cK ·
∑

pi ln pi
qi

= −cK · dH (P, Q) .
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Faces of entropic dimension 1

Theorem
Assume that a spectral set has entropic dimension at least 2 and has a
local Bregman divergence. Then any face of entropic dimension 1 is
isometric to a ball.

Proof.
The Bregman divergence restricted the the face is given by the entropy of
the orthogonal decomposition. The gradient is only radial if the face is a
ball.
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Some applications

In portfolio theory we want to maximize the revenue. The
corresponding Bregman divergence is local if and only if all portfolios
are dominated by portfolios corresponding to gambling in the sense of
Kelly.
In thermodynamics the locality condition is satisfied near
thermodynamic equilibrium and the amount of extracable energy
equals

kT ·D (P‖Peq)

where Peq is the state of the corresponding equilibrium state.
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Conclusion

Caratheodory’s theorem can be improved.
Information divergence is the only local Bregman divergence on
spectral set.
Information theory only works for spectral sets.
A complete classification of spectral sets is needed.
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