A Monte Carlo approach to a divergence minimization problem (work in progress) IGAIA IV, June 12-17, 2016, Liblice

Michel Broniatowski

Université Pierre et Marie Curie, Paris, France

June 13, 2016

From Large deviations to Monte Carlo based minimization Divergences Large deviations for bootstrapped empirical measure A Minimization problem Minimum of the Kullback divergence Minimum of the Likelihood divergence Building weights Exponential families and their variance functions, minimizing Cressie-Read divergences Rare events and Gibbs conditional principle Looking for the minimizers

An inferential principle for minimization

A sequence of random elements X_n with values in a measurable space $(\mathcal{T}, \mathcal{T})$ satisfies a Large Deviation Principle with rate Φ whenever, for all measurable set $\Omega \subset \mathcal{T}$ it holds

$$\begin{array}{ll} -\Phi\left(int\left(\Omega\right)\right) &\leq & \lim\inf_{n\to\infty}\varepsilon_n\log\Pr\left(X_n\in\Omega\right)\\ &\leq & \limsup_{n\to\infty}\varepsilon_n\log\Pr\left(X_n\in\Omega\right)\leq -\Phi\left(cl\left(\Omega\right)\right) \end{array}$$

for some positive sequence ε_n where $int(\Omega)$ (resp. $cl(\Omega)$) denotes the interior (resp. the closure) of Ω in T and $\Phi(\Omega) := \inf \{\Phi(t); t \in \Omega\}$. The σ -field T is the Borel one defined by a given basis on T. For subsets Ω in T such that

$$\Phi\left(int\left(\Omega\right)\right) = \Phi\left(cl\left(\Omega\right)\right) \tag{1}$$

it follows by inclusion that

$$-\lim_{n\to\infty}\varepsilon_n\log\Pr\left(X_n\in\Omega\right) = \Phi\left(int\left(\Omega\right)\right) = \Phi\left(cl\left(\Omega\right)\right) = \inf_{t\in\Omega}\Phi(t) = \Phi(\Omega)$$
(2)

Assume that we are given such a family of random elements $X_1, X_2, ...$ together with a set $\Omega \subset T$ which satisfies (1). Suppose that we are interested in estimating $\Phi(\Omega)$. Then, whenever we are able to simulate a family of replicates $X_{n,1}, ..., X_{n,K}$ such that $\Pr(X_n \in \Omega)$ can be approximated by the frequency of those $X_{n,i}$'s in Ω , say

$$f_{n,K}(\Omega) := \frac{1}{K} card \left(i : X_{n,i} \in \Omega\right)$$
(3)

a natural estimator of $\Phi\left(\Omega
ight)$ writes

$$\Phi_{n,K}\left(\Omega\right):=-\varepsilon_{n}\log f_{n,K}\left(\Omega\right).$$

We have substituted the approximation of the variational problem $\Phi(\Omega) := \inf (\Phi(\omega), \omega \in \Omega)$ by a much simpler one, namely a Monte Carlo one, defined by (3).

No need to identify the set of points ω in Ω which minimize Φ .

This program can be realized whenever we can identify the sequence of random elements X_i 's for which, given the criterion Φ and the set Ω , the limit statement (2) holds.

Here the X_i 's are empirical measures of some kind, and $\Phi(\Omega)$ writes $\phi(\Omega, P)$ which is the infimum of a divergence between some reference probability measure P and a class of probability measures Ω . Standpoint:

 $\phi(\Omega, P)$ is a LDP rate for specific X_i 's to be built. Applications: choice of models, estimation of the minimizers (dichotomy, etc)

Divergences

Let $(\mathcal{X}, \mathcal{B})$ be a measurable Polish space and P be a given reference probability measure (p.m.) on $(\mathcal{X}, \mathcal{B})$. Denote \mathcal{M}_1 the set of all p.m.'s on $(\mathcal{X}, \mathcal{B})$. Let φ be a proper closed convex function from $] -\infty, +\infty[$ to $[0, +\infty]$ with $\varphi(1) = 0$ and such that its domain dom $\varphi := \{x \in \mathbb{R} \text{ such that } \varphi(x) < \infty\}$ is a finite or infinite interval. For any measure Q in \mathcal{M}_1 , the φ -divergence between Q and P is defined by

$$\phi(Q, P) := \int_{\mathcal{X}} \varphi\left(\frac{dQ}{dP}(x)\right) \ dP(x).$$

if $Q \ll P$. When Q is not a.c. w.r.t. P, set $\phi(Q, P) = +\infty$. The ϕ -divergences between p.m.'s were introduced in Csiszar (1963) as "f-divergences" with some different definition.

For all p.m. P, the mappings $Q \in \mathcal{M} \mapsto \phi(Q, P)$ are convex and take nonnegative values. When Q = P then $\phi(Q, P) = 0$. Furthermore, if the function $x \mapsto \phi(x)$ is strictly convex on a neighborhood of x = 1, then

$$\phi(Q, P) = 0$$
 if and only if $Q = P$.

When defined on \mathcal{M}_1 , divergences associated with $\varphi_1(x) = x \log x - x + 1$ (KL), $\varphi_0(x) = -\log x + x - 1$ (KL_m-likelihood), $\varphi_2(x) = \frac{1}{2}(x-1)^2$ (Spearman Chi-square), $\varphi_{-1}(x) = \frac{1}{2}(x-1)^2/x$ (modified Chi-square, Neyman), $\varphi_{1/2}(x) = 2(\sqrt{x}-1)^2$ (Hellinger) The class of Cressie and Read power divergences

$$x \in]0, +\infty[\mapsto \varphi_{\gamma}(x) := \frac{x^{\gamma} - \gamma x + \gamma - 1}{\gamma(\gamma - 1)}$$
(4)

The power divergences functions $Q \in \mathcal{M}_1 \mapsto \phi_{\gamma}(Q, P)$ can be defined on the whole vector space of signed finite measures \mathcal{M} via the extension of the definition of the convex functions φ_{γ} : For all $\gamma \in \mathbb{R}$ such that the function $x \mapsto \varphi_{\gamma}(x)$ is not defined on $] - \infty, 0[$ or defined but not convex on whole \mathbb{R} , we extend its definition as follows

$$x \in]-\infty, +\infty[\mapsto \begin{cases} \varphi_{\gamma}(x) & \text{if } x \in [0, +\infty[, \\ +\infty & \text{if } x \in]-\infty, 0[. \end{cases}$$
(5)

Note that for the χ^2 -divergence for instance, $\varphi_2(x) := \frac{1}{2}(x-1)^2$ is defined and convex on whole \mathbb{R} .

The conjugate (or Legendre transform) of φ will be denoted φ^* ,

$$t\in \mathbb{R}\mapsto arphi^*(t):=\sup_{x\in \mathbb{R}}\left\{tx-arphi(x)
ight\}$$
 ,

Property: φ is essentially smooth iff φ^* is strictly convex; then,

$$arphi^*(t) = t {arphi'}^{-1}(t) - arphi \left({arphi'}^{-1}(t)
ight) \hspace{0.5cm} ext{and} \hspace{0.5cm} arphi^{*\prime}(t) = {arphi'}^{-1}(t).$$

In the present setting this holds.

Let Y, Y_1 , Y_2 , ...denote a sequence of positive i.i.d. random variables . We assume that Y satisfies the so-called Cramer condition

$$\mathcal{N}:=\left\{t\in\mathbb{R} ext{ such that }\Lambda_Y(t):=\log \textit{Ee}^{tY}<\infty
ight\}$$

contains a neigborhood of 0 with non void interior. Consider the weights W_i^n , $1 \le i \le n$

$$W_i^n := \frac{Y_i}{\sum_{i=1}^n Y_i}$$

which define a vector of exchangeable variables $(W_1^n, ..., W_n^n)$ for all $n \ge 1$.

The data $x_1^n, ..., x_n^n$: We assume that

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\delta_{x_i^n}=P$$

a.s. and we define the bootstrapped empirical measure of $(x_1^n, ..., x_n^n)$ by

$$P_n^W := \frac{1}{n} \sum_{i=1}^n W_i^n \delta_{x_i^n}.$$

A Sanov type result for the weighted Bootstrap empirical measure

Define the Legendre transform of $\Lambda_Y,$ say Λ^* defined on $Im\,\Lambda'$ by

$$\Lambda^*(x) := \sup_t tx - \Lambda_Y(t).$$

Theorem

Under the above hypotheses and notation the sequence P_n^W obeys a LDP on the space of all finite signed measures on X equipped with the weak convergence topology with rate function

$$\phi(Q, P) := \begin{array}{l} \inf_{m>0} \int \Lambda^* \left(m \frac{dQ}{dP}(x) \right) dP(x) \quad \text{if } Q << P \\ +\infty \qquad \text{otherwise} \end{array}$$
(6)

This Theorem is a variation on Corollary 3.3 in Trashorras and Wintenberger (2014).

Michel Broniatowski (Institute)

Monte Carlo and divergences

Estimation of the minimum of the Kullback divergence

Set $Y_1, ..., Y_n$ i.i.d. standard exponential . Then

$$\Lambda^*\left(x\right)=\varphi_1(x):=x\log x-x+1$$

and

$$\inf_{m>0} \int \Lambda^* \left(m \frac{dQ}{dP}(x) \right) dP(x) = \int \Lambda^* \left(\frac{dQ}{dP}(x) \right) dP(x) = KL(Q, P) \,.$$

Repete sampling $(Y_1, ..., Y_n)$ i.i.d. E(1) K times. Hence for sets Ω such that

$$\mathit{KL}(\mathit{int}\Omega, \mathit{P}) = \mathit{KL}(\mathit{cl}\Omega, \mathit{P})$$

then for large K

$$\frac{1}{n}\log\frac{1}{K}card\left\{\left(P_{n}^{W}\right)_{j}\in\Omega,1\leq j\leq K\right\}$$

is a proxy of

$$\frac{1}{n}\log\Pr\left(P_n^W\in\Omega\right)$$

and therefore an estimator of $KL(\Omega, P)$.

When Y is E(1) then by Pyke's Theorem, $(W_1..., W_n)$ coincides with the spacings of the ordered statistics of n i.i.d. uniformly distributed r.v's on (0, 1), i.e. the simplest bootstrap version of P_n based on exchangeable weights.

It also holds with these weights

$$\lim_{n \to \infty} \frac{1}{n} \log \Pr\left(\left. P_n^W \in \Omega \right| x_1^n, ..., x_n^n \right) - \frac{1}{n} \log \Pr\left(P_n \in \Omega \right) = 0$$

This weighted bootstrap is the only LDP efficient one.

Estimation of the minimum of the Likelihood divergence

$$\mathcal{K}L_{m}\left(Q,P\right) := \int \varphi_{0}\left(\frac{dQ}{dP}\right) dP = -\int \log\left(\frac{dQ}{dP}\right) dP$$
$$\varphi_{0}\left(x\right) := -\log x + x - 1.$$

Set $Y_1, ..., Y_n$ i.i.d. Poisson (1), then

$$\begin{split} \Lambda^*\left(x\right) &= \varphi_0(x) := -\log x + x - 1\\ \inf_{m \geq 0} \int \Lambda^*\left(m\frac{dQ}{dP}(x)\right) dP(x) &= \int \Lambda^*\left(\frac{dQ}{dP}(x)\right) dP(x) = \textit{KL}\left(Q,P\right). \end{split}$$

Repete sampling $(Y_1, ..., Y_n)$ i.i.d. Poisson(1) K times. For large K

$$\frac{1}{n}\log\frac{1}{K}card\left\{\left(\boldsymbol{P}_{n}^{W}\right)_{j}\in\Omega,1\leq j\leq K\right\}$$

is an estimator of $KL_{m}(\Omega, P)$, since a proxy of

$$\frac{1}{n}\log\Pr\left(P_n^W\in\Omega\right)$$

A more general LDP associated with other divergences

We may also consider some wild bootstrap version, defining the wild empirical measure by

$$\mathsf{P}_n^{Wild} := rac{1}{n} \sum_{i=1}^n Y_i \delta_{x_i}$$

where the r.v's Y_1 , Y_2 ,.. are i.i.d. with common expectation 1 and satisfy a Cramer condition with cumulant g.f. Λ_Y .

In this case it is somehow easy to prove the following general result.

Theorem

The wild empirical measure P_n^{Wild} obeys a LDP in the class of all signed finite measures endowed by the τ -topology with good rate function $\phi(Q, P) = \int \Lambda^* (dQ/dP) dP$; Barbe and Bertail (1995); Najim (2005), etc

For adequate sets in the class of signed finite measures

$$\lim_{n \to \infty} -\frac{1}{n} \log \Pr\left(\left|P_n^{Wild} \in \Omega \right| x_1^n, ..., x_n^n\right) = \phi\left(\Omega, P\right) \tag{7}$$

Question

Is it possible to build r.v's $Y_1, ..., Y_n$ such that

$$\lim_{n \to \infty} -\frac{1}{n} \log \Pr\left(\left|P_n^{Wild} \in \Omega\right| x_1^n, ..., x_n^n\right) = \phi\left(\Omega, P\right)$$

holds for a given

$$\phi\left(Q,P\right) = \int \varphi\left(\frac{dQ}{dP}\right) dP$$

If yes then for "good" sets Ω , for large K

$$rac{1}{n}\lograc{1}{\mathcal{K}} ext{card}\left\{\left(\textit{P}_{n}^{\textit{Wild}}
ight)_{j}\in\Omega,1\leq j\leq\mathcal{K}
ight\}$$

estimates $\phi\left(\Omega,P
ight)$, since a proxy of

$$\frac{1}{n}\log\Pr\left(P_n^{Wild}\in\Omega\right)$$

Set of measures Ω to be considered in may satisfy

$$\phi(int(\Omega), P) = \phi(cl(\Omega), P)$$
(8)

where int (Ω) and $cl(\Omega)$ respectively denote the interior and the closure of the set Ω in \mathcal{M}_1 endowed with the corresponding τ or weak topology. Such sets Ω have been considered in the Large Deviation literature. Some sufficient conditions for (8) to hold; see Groeneboom, Osterhoof Ruymgaart (1979) (among others) for discussions. This is an entire field of questions and (counter) examples. Estimation of $\phi(\Omega, P)$ is somehow an open problem: Usually try to identify the minimizers; difficult cases: Ω defined by moments of L-Statistics, ...Here find $\widehat{\phi(\Omega, P)}$ and get the minimizers after (dichotomy

on Ω , etc).

A reciprocal statement to the LDP Theorem. We prove that any Cressie-Read divergence function is the Fenchel-Legendre transform of some moment generating function Λ . Henceforth we state a one to one correspondence between the class of Cressie-Read divergence functions and the distribution of some Y which can be used in order to build a bootstrap empirical measure of the form P_n^W .

We turn to some results on exponential families ; see Letac and Mora (1990).

Natural exponential families and their variance function Given a positive measure μ on \mathbb{R} consider the integral

 $\phi_{\mu}(t) := \int e^{tx} d\mu(x)$ and its domain \mathcal{D}_{μ} , the set of all values of t such that $\phi_{\mu}(t)$ is finite, which is a convex (possibly void) subset of \mathbb{R} . Denote $k_{\mu}(t) := \log \phi_{\mu}(t)$ and let $m_{\mu}(t) := (d/dt) k_{\mu}(t)$ and $s_{\mu}^{2}(t) := (d^{2}/dt^{2}) k_{\mu}(t)$. Associated with μ is the Natural Exponential Family NEF(μ) of distributions

$$dP_t^{\mu}(x) := \frac{e^{tx}d\mu(x)}{\phi_{\mu}(t)}$$

which is indexed by t. It is a known fact that, denoting X_t a r.v. with distribution P_t^{μ} it holds $EX_t = m_{\mu}(t)$ and $VarX_t = s_{\mu}^2(t)$. The NEF(μ) is generated by μ . NEF(ν) =NEF(μ) iff $d\nu(x) = \exp(ax + b)d\mu(x)$. This class is denoted NEF(\mathcal{B}). Defined on Im $m_{\mathcal{B}}$ (all m_{μ} in \mathcal{B} have same image), the function

$$x \to V(x) := s_{\mu}^2 om_{\mu}^{\leftarrow}(x)$$

is independent of the peculiar choice of μ in \mathcal{B} and is therefore called the *variance function* of the NEF(\mathcal{B}).

Theorem

The function V characterizes the NEF, and reciprocally.

Starting with Morris (1982) a wide effort has been developed in order to characterize the basis of a NEF with given variance function. Stats: heteroscedastic models, variance regressed on the expectation; Tweedie (1947),...

Power variance functions $V(x) = Cx^{\alpha}$ have been explored by various authors (BarLev and Ennis (1986), etc). NEF with variance function V are obtained through integration and identification of the resulting moment generating function. They are generated as follows (we identify the bases).

- For $\gamma < 0$ by stable distributions on \mathbb{R}^+ with characteristic exponent in (0, 1). The resulting distributions define the Tweedie scale family (with base these stable laws) Example in the NEF: Inverse Gaussian $(\gamma = -1/2)$
- For $\gamma = 0$ by the exponential distribution
- $\bullet\,$ For 0 $<\gamma<1$ by Compound Gamma-Poisson distributions
- For $\gamma=1$ by the Poisson distribution
- For $\gamma=2$ by the normal distribution

Other values of γ do not yield NEF's.

Theorem

(BarLev, Ennis) All distributions with power variance function are indefinitely divisible.

Consequence: a major tool for the simulation of the weights, etc*

Fact

The second derivative of the Legendre transform of the cumulant g.f. is the inverse of the variance function

Cressie-Read divergences , weights and variance functions

For

$$\varphi_{\gamma}\left(x\right):=C\frac{x^{\gamma}-\gamma x+\gamma-1}{\gamma\left(\gamma-1\right)}$$

Any Cressie-Read divergence function is the Fenchel Legendre transform of a moment generating function of a random variable with expectation 1 and variance 1/C in a specific NEF, depending upon the divergence. Let Y be a r.v. with $\psi(t) := \log E \exp tY$ and power variance function

$$V(x) = \frac{1}{C}x^{a}$$

. Then

$$\varphi_{\gamma}(x) = \psi^{*}(x) = \sup_{t} tx - \psi(t);$$

with $\alpha = 2 - \gamma$. The NEF is generated by the distribution of Y. Since the differential equation $\frac{d^2}{dx^2}\varphi_{\gamma}(x) = Cx^{-\alpha}$ defines $\varphi_{\gamma}(x)$ in a unique way: one to one correspondence between Cressie-Read divergences and NEF's with power Variance functions. Hence to any Cressie Read divergence its family of weights.

Michel Broniatowski (Institute)

The Tweedie scale of distributions defines random variables Y with expectation 1 and variance C_{τ} corresponding to Cressie Read divergences with negative index $\gamma = -\tau/(1-\tau)$. The generator of the NEF (a measure μ) has characteristic function

$$f(t) = \exp\left\{iat - c \left|t\right|^{\tau} \left(1 + i\beta sign\left(t\right)\omega\left(t,\tau\right)\right)\right\}$$

where $a \in \mathbb{R}$, c > 0 and $\omega(t, \tau) = \tan\left(\frac{\pi\tau}{2}\right)$ for $\tau \neq 1$, and $\omega(t, \tau) = \frac{2}{\pi}$ for $\tau = 1$.

We consider the case when $\beta = 1$ and $0 < \tau < 1$ corresponding to a stable distribution on \mathbb{R}^+ . For $\gamma = -1$, ($\tau = 1/2$) the resulting divergence is

$$\varphi_{-1}(x) = \frac{1}{2} \frac{(x-1)^2}{x}$$

which is the modified χ^2 divergence (or Neyman χ^2). The associated r.v. Y has an Inverse Gaussian distribution with expectation 1 and variance 1.

For $\gamma=2$ it holds

$$\varphi_{2}(x) = \frac{1}{2}(x-1)^{2}$$

which is the Spearman χ^2 divergence. The resulting r.v. Y has a Gaussian distribution with expectation 1 and variance 1. Note that in this case, Y is not a positive random variable.

For $\gamma=1/2$ we get

$$\varphi_{1/2}(x) = 2\left(\sqrt{x} - 1\right)^2$$

which is the Hellinger divergence. The associated random variable Y has a Compound Gamma-Poisson distribution .

Example

When $\gamma = 3/2$ the distribution of Y belongs to the NEF generated by the stable law μ on \mathbb{R}^+ with characteristic exponent 1/3,

$$f(x) = (d\mu(x)/dx) = (2\pi)^{-1} \lambda K_{1/2} \left(\lambda x^{1/2}\right) \exp\left(-px + 3\left(\lambda^2 p/4\right)^{1/3}\right)$$

where λ and p are positive and $K_{1/2}(z)$ is the modified Bessel function of order 1/2 with argument z.

When $\gamma=1$ then

$$\varphi_0\left(x\right) = x\log x - x + 1,$$

the Kullback-Leibler divergence function, and Y has an exponential distribution with parameter 1.

Example

When $\gamma = 0$ then

$$\varphi_0\left(x\right) = -\log x + x - 1,$$

the Likelihood divergence and Y has a Poisson distribution with parameter 1.

$$\mathcal{P}_n^{Wild} \in \Omega$$
 may be a (very) rare event. Consider

$$\frac{1}{K}\sum_{j=1}^{K}\mathbf{1}_{\Omega}\left(\left(\boldsymbol{P}_{n}^{\textit{Wild}}\right)_{j}\right)$$

Calculation may be long when $\Pr((P_n^{Wild}) \in \Omega)$ is small (hit rate very low). This opens a range of questions.

Importance Sampling

Recall Let X some random element; assume it has a density p. We want to evaluate

$$\mathbf{P} := \Pr\left(X \in A\right)$$

Let $X_1, ..., X_K$ be K independent copies of X and

$$P_{K} := rac{1}{K}\sum_{i=1}^{K} \mathbb{1}_{A}\left(X_{i}
ight)$$

the "naive" estimator of \mathbf{P} . For any density g where it makes sense

$$\mathbf{P} = \int \mathbf{1}_{A}(x) \, \mathbf{p}(x) dx = \int \mathbf{1}_{A}(x) \, \frac{\mathbf{p}(x)}{\mathbf{g}(x)} \mathbf{g}(x) dx$$

and therefore

$$P_{g,K} := rac{1}{K} \sum_{i=1}^{K} \mathbb{1}_{A} \left(Z_{i}
ight) rac{p(Z_{i})}{g(Z_{i})}$$

converges to P.

Michel Broniatowski (Institute)

"MetaTheorem" The closer the sampling density to the density of X given $X \in A$, the most "efficient " the estimator. i.e. the highest the hit rate, the smallest the variance, etc.

Here

$$X:=P_n^{Wild}=\frac{1}{n}\sum_{i=1}^n Y_i\delta_{x_i^n}.$$

Assume for example that

$$\Omega := \left\{ Q : \int f(x) dQ(x) > s \right\}$$

say for some f and real a.

$$\left(\mathcal{P}_{n}^{Wild}\in\Omega\right)=\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}f(x_{i}^{n})>s\right).$$

With $x_i^n = x_i$ and $f(x_i) = a_i$

$$\left(P_n^{Wild} \in \Omega
ight) = \left(rac{1}{n} \sum_{i=1}^n a_i Y_i > s
ight)$$

3

The form of the estimator $(Y_{1,1}, ..., Y_{n,1})$, ..., $(Y_{n,1}, ..., Y_{n,K})$ i.i.d samples of i.i.d. replications

$$P_{\mathcal{K}} := \frac{1}{\mathcal{K}} \sum_{i=1}^{\mathcal{K}} \mathbb{1}_{(s,\infty)} \left(\frac{1}{n} \sum_{i=j}^{n} \mathsf{a}_{j} Y_{j,i} \right)$$

The IS estimator

$$P_{g,K} := \frac{1}{K} \sum_{i=1}^{K} \mathbb{1}_{(s,\infty)} \left(\frac{1}{n} \sum_{j=1}^{n} a_j Z_{j,i} \right) \frac{p(Z_{1,i}) \dots p(Z_{n,i})}{g(Z_{1,i}, \dots, Z_{n,i})}$$

where g is any density on \mathbb{R}^n where the ratio is defined.

Approximate the density of $(Y_1, ..., Y_n)$ given $(\frac{1}{n} \sum_{j=1}^n a_j Y_i > s)$; Gibbs conditional result (Csiszar, 1984), Dembo, Zeitouni (1996), Br-Caron (2014), etc.

Exploring the minimizers of $\phi(Q, P)$ when $Q \in \Omega$ and $\Omega := \cup_{\alpha} \Omega_{\alpha}, \alpha \in A$ **Dichotomy:**

Estimate $\phi(\Omega, P)$. Split A into A_1 and A_2 so that $\Omega = \Omega^1 + \Omega^2$ $(\Omega^j := Q \in \Omega :$ there exists some α in A_j with $Q \in \Omega_{\alpha}$. Estimate $\phi(\Omega^1, P)$ and $\phi(\Omega^2, P)$ If $\phi(\Omega, P) = \phi(\Omega^j, P)$ then a minimizer is in Ω^j . Split these Ω^j and iterate

The Tweedie scale

Let Z be a r.v. with stable distribution on \mathbb{R}^+ and density p. Its characteristic function $f(t) = E \exp itZ$ is described by the formula

$$f(t) = \exp\left\{iat - c \left|t\right|^{\tau} \left(1 + i\beta sign\left(t\right)\omega\left(t,\tau\right)\right)\right\}$$

where $a \in \mathbb{R}$, c > 0 and $\omega(t, \tau) = \tan(\frac{\pi\tau}{2})$ for $\tau \neq 1$, and $\omega(t, \tau) = \frac{2}{\pi}$ for $\tau = 1$.

We consider the case when $\beta = 1$ and $0 < \tau < 1$ corresponding to a stable distribution on \mathbb{R}^+ which therefore satisfies the following characterization: For $Z_1, ..., Z_n$ *n* i.i.d. copies of *Z* there exists $a_n > 0$ such that

$$\frac{Z_1 + \ldots + Z_n}{a_n} =_d Z$$

where the equality holds in distribution. Also $a_n = n^{1/\tau}$. The Laplace transform of p satisfies

$$\varphi(t) := \int_0^\infty e^{-tx} p(x) dx = e^{-t^{\tau}}_{0, x \in \mathbb{R}} \quad \text{if } x \in \mathbb{R}$$

Michel Broniatowski (Institute)

Monte Carlo and divergences

for all non negative value of t; see [?].

Mich

Associated with p is the Natural Exponential family (NEF) with basis p namely the densities defined for non negative t through

$$p_t(x) := e^{-tx} p(x) / e^{-t^{\tau}}$$

with support \mathbb{R}^+ . For positive t, a r.v. X_t with density p_t has a moment generating function $E \exp \lambda X_t$ which is finite in a non void neighborhood of 0 and therefore has moments of any order.

Consider the density $p_1(x) = e^{-x+1}p(x)$ with finite m.g.f. in $(-\infty, 1)$, expectation $\mu = \tau$ and variance $\sigma^2 = \tau(1-\tau)$. Finally set for all non negative x

$$q(x) := \sqrt{ au(1- au)} p_1\left(x\sqrt{ au(1- au)} + au - 1
ight)$$

which is for all $0 < \tau < 1$ the density of some r.v. Y with expectation 1 and variance 1. The m.g.f. of Y is

$$E \exp \lambda Y = e \exp \left[1 - \frac{\tau}{\sqrt{\tau(1-\tau)}} \right] \exp \left[1 - \frac{\lambda}{\sqrt{\tau(1-\tau)}} \right]^{\tau}$$
el Broniatowski (Institute) Monte Carlo and divergences June 13, 2016 36 / 36

For $\tau = 1/2$, Y has the Inverse Gaussian distribution with parameters (1, 1) and m.g.f

$${\it E} \exp \lambda {\it Y} = {\it e} \left(\exp - \left[1 - 2 \lambda
ight]^{1/2}
ight)$$
 .

The variance function of the NEF generated by a stable distribution with index τ in (0, 1) writes

$$V(x) = C_{\tau} x^{\frac{2-\tau}{1-\tau}}$$

with

$$\mathcal{C}_{ au} := \left(rac{1- au}{ au}
ight)^{rac{2- au}{2(1- au)}}$$

Example

Compound Gamma Poisson distributions

We briefly characterize this compound distribution and the resulting weight W. Let μ denote the distribution of $S_N := \sum_{i=0}^N \Gamma_i$ where $S_0 := 0$, N is a Poisson (p) r.v. independent of the independent family $(\mathbf{F}_i)_{i>1}$ June 13, 2016 36 / 36

Michel Broniatowski (Institute)

Monte Carlo and divergences

where the Γ_i 's are distributed with Gamma distribution with scale parameter $1/\lambda$ and shape parameter $-\rho$. Here

$$\rho := \frac{\gamma - 1}{\gamma}$$
$$\lambda := \rho$$
$$p := (\gamma - 1)^{-1/\gamma}$$

where we used the results in [?] p1516. Consider the family of distributions NEF(μ) generated by μ , which has power variance function $V(x) = x^{\gamma+1}$ defined on \mathbb{R}^+ . The r.v. W has distribution in NEF(μ) with expectation and variance 1. Its density is of the form

$$f_W(x) := \exp\left(ax + b\right) f(x)$$

where $f(x) := (d\mu(x)/dx)$ is the density of S_N . The values of the parameters *a* and *b* are

$$\begin{aligned} \mathbf{a} &:= -1 \\ \mathbf{b} &:= -\left(\gamma - 1\right)^{-1/\gamma} \left[\left(1 - \frac{\gamma}{\gamma - 1}\right)^{\rho} - 1 \right] \end{aligned}$$