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Abstract
Binary information geometry (BIG) is a particular case of computational

information geometry (CIG) which (i) provides and exploits a universal space
of models for binary random vectors, this being an exponentially high-
dimensional extended multinomial family, and (ii) finds natural, fruitful appli-
cation in a range of important areas, including: (A) binary graphical models,
notably Boltzmann machines and, (B) logistic regression.

Key features of CIG here
• Want to exploit the key duality of classical IG between sample and

model spaces as cleanly as possible. In classical IG counts can be
zero but probabilities can not. In CIG we allow both to be zero.

• Thus, the underlying dimensions are not kept fixed as we are work-
ing on closed simplexes rather than open subsets of manifolds.

• CIG has a distinctive geometric approach to the closure of exponen-
tial families, exploiting the polar dual of the boundary.

• Boundaries play a key role in CIG – the geometry of the boundary
dominates the global IG in the relative interior.

• Geometric features include: dually ruled spaces, the polar dual, the
structure of convex hulls and especially their boundaries.

• Computational issues include: exploiting the ruling, computing the
polar dual in high dimensional spaces, using the boundary structure
for model selection, and calculating the effect of the polar dual on
inference.

Example 1: Binary graphical models
We look at models of joint distributions of binary vectors where the
dependence is determined by the values of hidden binary nodes. Con-
ditionally these models are independent, full exponential families, so
that unconditionally they are mixture models of a fixed order. Exam-
ples include Boltzmann machines where we have NI input, NH hidden
and NO output nodes.
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Figure 1: Structure of models

The universal space of joint models for binary vectors is an extended
multinomial model whose boundary dominates the global behaviour.

Figure 2 corresponds to the case with NI = NH = NO = 1. The set
of independent models, shown in Panel (a), is a full exponential family
defined by unions of (−1)-affine subsets, i.e. is a ruled space.
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Figure 2: (a) independence space (blue) in universal space, (b) mean parameter space
and boundary, (c) polar dual which defines directions of recession

Figure Fig. 2(b) shows its boundary in the (−1)-affine parameters. The
limit points in the (+1)−affine structure of the relative interior are
given by the polar dual to the boundary in (b) and determine the di-
rections of recession.

●

●

(1,0)

(0,0)

(1,1)

(0,1)

Figure 3: Convex hull and boundary of one-dimensional exponential family (red).
0.5-hull is green, 1-hull is red, 1.5-hull is blue.

The convex hull of a one dimensional exponential family is a union of
smooth manifolds of differing dimensions, called N -hulls, where N is
the number of components. Note when a vertex is a component it is
counted with a value of 1

2.
In Fig. 3, the 1

2-hull (green) is the union of two vertices, the 1-hull
(red) is the union of the r.i. of the exponential family and the (−1)-
geodesic joining the vertices, the 112-hull (blue) is the union of two
ruled surfaces (one for each vertex), and the 2-hull is the r.i. of the full
convex hull. In general, unless of full rank, these components are not
convex (or even connected), and thus the likelihood can have multiple
modes.

Take home message: The index-based decomposition of the bound-
ary of a closed convex hull throws light upon the structure of the binary

graphical model, [2], distinguishing between multi-modal, unimodal
and over-parameterised likelihoods.

Example 2: Logistic regression

The logistic regression model is widely used for a binary response
given a set of binary covariates.
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Figure 4: Logistic regression example: (a) mean parameters and boundary, (b) direc-
tions of recession in (+1)-parameters, (c) polytopal shape of likelihood near bound-
ary, (d) the directions of recession determine the extremes of the likelihood.

Logistic regression has a full exponential structure. The panels (a) and
(b) of Fig. 4 show the boundary, and the corresponding directions of
recession in the (±1)-affine parameters respectively, for a simple lo-
gistic example. For different data sets, the panels (c) and (d) show how
the global shape of the likelihood is predominantly determined by the
boundary.

Take home message: Logistic regression models are low-
dimensional within an exponentially high-dimensional universal space.
This high-dimensionality is reflected in the complicated mean param-
eter polytope. This boundary polytope determines key statistical prop-
erties of the model:

• the likelihood has polytope behaviour at infinity, Fig 4 (c).

• The extremal behaviour of the likelihood is determined by the direc-
tions of recession, Fig 4 (d).

Figure 5 shows the effect of the boundary on sampling distributions
for a more complex model, described in [1], for a subset of Fisher’s iris
data. In Panel (a), we see the sampling distribution of the MLE, whose
level of discreteness is determined by the number of directions of re-
cession. The higher order asymptotic theory, reflected in Edgeworth
expansion, is shown in blue, showing appreciable non-normality. In
(b) the effect of the directions of recession are more obvious. The non-
normality is very clear in the marginal structure shown in (c).
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(a) Sampling distribution
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(b) Sampling distribution
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Figure 5: (a) mean parameter space, complex boundary (red), sample from distribu-
tion of MLE (black), Edgeworth approximation (blue). (b) sampling distribution of
MLE in (+1)-parameters, (c) marginal distribution of one component of MLE

Take home message: Both likelihood (Fig. 4) and sampling distribu-
tions (Fig. 5) have, simultaneously, continuous and discrete features:

• Classical IG method accommodate the continuous features well.

• Novel CIG methods accommodate the discrete features, which dom-
inate in the boundary limits.
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