GAIA'IV
 Information Geometry and its Applications IV

Abstract

 $k^{(1)}=\frac{12 \pi^{2} \gamma-144 \gamma+72}{\pi^{4}}$,
where $\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty} \frac{1}{k}-\log n\right)$ is Euler-Mascheroni constant. Thus, the Weibull model is a conjugate symmetric.
We compare the values of α-curvatures for the different statistical models.

STATISTICAL MANIFOLD

Let \boldsymbol{M} be a smooth manifold, $\operatorname{dim} \boldsymbol{M}=\boldsymbol{n}$,
$\langle\cdot, \cdot\rangle=g$ be a Riemannian metrics,
\boldsymbol{K} be a (2,1) - tensor such that (1) $\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{Y})=\boldsymbol{K}(\boldsymbol{Y}, \boldsymbol{X}) ;(\mathbf{2})\langle\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{Y}), \boldsymbol{Z}\rangle=\langle\boldsymbol{Y}, \boldsymbol{K}(\boldsymbol{X}, \boldsymbol{Z})\rangle$, where $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ are vector fields on \boldsymbol{M}
Then a triple $(\boldsymbol{M}, \boldsymbol{g}, \boldsymbol{K})$ is a statistical manifold
If \boldsymbol{D} is the metric connection, i.e. $\boldsymbol{D} \boldsymbol{g}=\mathbf{0}, \alpha$ is a real-valued parameter,
then the linear connections of 1 - parameter family $\nabla^{\alpha}=\boldsymbol{D}+\boldsymbol{\alpha} \cdot \boldsymbol{K}$ are called α - connections.

STATISTICAL MODEL

Let $\boldsymbol{S}=\left\{\boldsymbol{P}_{\boldsymbol{\theta}^{i}} \mid \boldsymbol{i}=\mathbf{1}, \ldots, \boldsymbol{n}\right\}$ be a family of probability distributions on a measurable space with a probability measure $P, \partial_{i}=\frac{\partial}{\partial \theta^{i}}$
$\log p\left(x \mid \theta^{i}\right)$ denotes the natural logarithm of the likelihood function.
Then \boldsymbol{S} is called a \boldsymbol{n}-dimensional statistical model.
The Fisher information matrix $I_{i j}(\theta)=\int \partial_{i} \log p \cdot \partial_{j} \log p \cdot p d P$
and the components $K_{i j k}(\theta)=-\frac{1}{2} \int \partial_{i} \log p \cdot \partial_{j} \log p \cdot \partial_{k} \log p \cdot p d P(j, k=1, \ldots, n)$
give the structure of the statistical manifold $\left(P, \iota_{i j}, K_{i j}\right)$ on S
The covariant components of α-connections named Amari-Chentsov connections are
$\Gamma_{i j k}^{(\alpha)}(\theta)=\int\left(\partial_{i} \partial_{j} \log p \cdot \partial_{k} \log p+\frac{1-\alpha}{2} \partial_{i} \log p \cdot \partial_{j} \log p \cdot \partial_{k} \log p\right) \cdot p d P$

NORMAL 2-DIM MODEL

$p(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right\} ; \mu=\theta^{1}, \sigma=\theta^{2}>0$;

$$
\begin{aligned}
& I_{i j}=\left(\begin{array}{cc}
\frac{1}{\sigma^{2}} & 0 \\
0 & \frac{1}{\sigma^{2}}
\end{array}\right) \\
& k^{(\alpha)}=\frac{\alpha^{2}-1}{2}
\end{aligned}
$$

WEIBULL 2-DIм MODEL

$p(x \mid \lambda, k)=\left(\frac{k}{\lambda}\right) \cdot\left(\frac{x}{\lambda}\right)^{k-1} \cdot \exp \left\{-\left(\frac{x}{\lambda}\right)^{k}\right\} ; \lambda=\theta^{1}>0, k=\theta^{2}>0 ; x>0$.

The distribution function is $\boldsymbol{F}(\boldsymbol{x} \mid \boldsymbol{\lambda}, \boldsymbol{k})=\mathbf{1}-\exp \left\{-\left(\frac{\boldsymbol{x}}{\lambda}\right)^{\boldsymbol{k}}\right\}$, logarithm of the likelihood function and its partial derivatives are
$\ln p(x \mid \lambda, k)=\ln \left(\frac{k}{\lambda}\right)+(k-1) \cdot \ln \left(\frac{x}{\lambda}\right)-\left(\frac{x}{\lambda}\right)^{k} ; \partial_{1} \ln p(x \mid \lambda, k)=-\frac{k}{\lambda}+\frac{k}{\lambda^{k+1}} x^{k} ;$
$\partial_{2} \ln p(x \mid \lambda, k)=\frac{1}{k}+\left(1-\left(\frac{x}{\lambda}\right)^{k}\right) \cdot \ln \left(\frac{x}{\lambda}\right)$. We obtain the non-zero components of the structure as

$$
I=\left(\begin{array}{cc}
\left(\frac{k}{\lambda}\right)^{2} & \frac{\gamma-1}{\lambda^{\lambda}} \\
\frac{\gamma-1}{\lambda} & \frac{\pi^{2}+6 \gamma^{2}-12 \gamma+6}{6 k^{2}}
\end{array}\right)
$$

$\operatorname{det} t_{j=}=\frac{\pi}{\sigma_{2}^{2}} ;$

$K_{111}=-\left(\frac{k}{\lambda}\right)^{3}, \quad K_{112}=K_{121}=K_{211}=\frac{(2-\gamma) k}{\lambda^{2}}, K_{122}=K_{212}=K_{221}=-\frac{\pi^{2}+6 \gamma^{2}-24 \gamma+12}{6 \lambda k}$,
$K_{222}=\frac{\pi^{2}(2-\gamma)-4 \zeta(3)-2 \gamma^{3}+12 \gamma^{2}-12 \gamma+2}{2 \kappa^{3}}$.
Consider the case $\alpha=\mathbf{1}$. Then we have the non-zero components ${ }^{(1)} \Gamma_{j k}^{i}$ of Amari-Chentsov connections on the Weibull model as
${ }^{(1)} \Gamma_{11}^{1}=-\frac{k+1}{\lambda},{ }^{(1)} \Gamma_{12}^{1}={ }^{(1)} \Gamma_{21}^{1}=\frac{2 \pi^{2}-6 \gamma+6}{\pi^{2} k}$, ${ }^{(1)} \Gamma_{12}^{2}={ }^{(1)} \Gamma_{21}^{2}=-\frac{\left(\pi^{2}-6\right) k}{\pi^{2} \lambda}$,
${ }^{(1)} \Gamma_{11}^{1}=-\frac{k+1}{\lambda^{4}},{ }^{(1)} \Gamma_{12}^{1}={ }^{(1)} \Gamma_{21}^{1}=\frac{2 \pi^{2}-6 \gamma+6}{\pi^{2} k},{ }^{(1)} \Gamma_{12}^{2}={ }^{(1)} \Gamma_{21}^{2}=-\frac{\left(\pi^{2}-6\right) k}{\pi^{2} \lambda}$,
${ }^{(1)} \Gamma_{22}^{1}=-\frac{\pi^{4}-12 \pi+6 \pi^{2} \gamma(2-\gamma)+72(\gamma-1)^{2}-72 \zeta(3)(\gamma-1)}{6 \pi^{2} k^{3}} \lambda,{ }^{(1)} \Gamma_{22}^{2}=-\frac{2 \pi^{2}(2-\gamma)-12 \zeta(3)+12 \gamma-12}{\pi^{2} k}$.
Theorem 4.Weibull two-dimensional statistical model is a conjugate symmetric statistical manifold. Its 1-connection has the constant curvature

$$
k^{(1)}=\frac{12 \pi^{2} \gamma-144 \gamma+72}{\pi^{4}}
$$

where $\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty} \frac{1}{k}-\log n\right)$ is Euler-Mascheroni constant.

References

[1] Amari S.- I., Nagaoka H. (2000) Metods of information geometry, Transl. Math. Monogr., 191, AMS, Oxford Univ. Press, Providence, Rhode Island.
[2] Lautitzen S. (1987) Conjugate connections in statistical theory, Geometrization of statistical theory, C.T.J., Dodson, ed. Lancaster, 33-51.
[3] Noguchi M. (1992) Geometry of statistical manifolds, Diff. Geom. Appl., 2, 197-222.
[4] Peng L., Sun H., Jiu L. (2007) The geometric structure of the Pareto distribution, Bol. Asoc. Math. enez., XIV,1-2, 5-13.
[5] Ivanova R. (2010) A geometric observation on four statistical parameter spaces, Tensor, N. S., 72, 188-195.
[6] Rylov A. (2011) Amari-Chentsov connections on the logistic model, Izv. PGPU Belinskogo, 26, 195-206 (in Russian).

CONJUGATE STATISTICAL MANIFOLD

Denote $\boldsymbol{R}_{X Y}^{\alpha}$ a curvature operator of ∇^{α}, Ric $^{\alpha}$ a Ricci tensor of ∇^{α} ω_{g} a volume element associated to the metrics.
We call ($\boldsymbol{M}, \boldsymbol{g}, \boldsymbol{K}$) a conjugate symmetric manifold, when $\boldsymbol{R}_{\boldsymbol{X Y}}^{\alpha} \boldsymbol{g}=\mathbf{0}$ for any parameter α.
This is equivalent to the equality $\boldsymbol{R}^{\alpha}=\boldsymbol{R}^{-\alpha}$ for any dual α-connections.
Theorem 1. If some α-connection has a constant α-curvature $\boldsymbol{k}^{(\alpha)}$, i.e.
$\boldsymbol{R}^{\alpha}(\boldsymbol{X}, \boldsymbol{Y}) \boldsymbol{Z}=\boldsymbol{K}^{\alpha}(\langle\boldsymbol{Y}, \boldsymbol{Z}\rangle \boldsymbol{X}-\langle\boldsymbol{X}, \boldsymbol{Z}\rangle \boldsymbol{Y})$, then $(\boldsymbol{M}, \boldsymbol{g}, \boldsymbol{K})$ is a conjugate symmetric manifold.
Theorem 2. If $(\boldsymbol{M}, \boldsymbol{g}, \boldsymbol{K})$ is a conjugate symmetric manifold with α-connections which are
(1) equiprojective, i.e. $R^{\alpha}(X, Y) Z=\frac{1}{n-1}\left(\operatorname{Ric}^{\alpha}(X, Z) Y-\operatorname{Ric}^{\alpha}(Y, Z) X\right)$,
(2) strongly compatible with the metrics g, i.e. $\left(\nabla_{X}^{\alpha} g\right)(Y, Z)=\left(\nabla_{Y}^{\alpha} g\right)(X, Z) ; \nabla^{\alpha} \omega_{g}=0$, then $(\boldsymbol{M}, \boldsymbol{g}, \boldsymbol{K})$ is a statistical manifold of a constant α - curvature.

PARETO 2-DIM MODEL

$p(x \mid a, \rho)=\rho a^{\rho} x^{-\rho-1} ; a=\theta^{1}>0, \rho=\theta^{2}>0 ; x \geq a$.

$$
I_{i j}=\left(\begin{array}{cc}
\left(\frac{\rho}{a}\right)^{2} & 0 \\
0 & \frac{1}{\rho^{2}}
\end{array}\right)
$$

$K_{111}=-\left(\frac{1}{2}\right) \cdot\left(\frac{\rho}{a}\right)^{3}, K_{112}=K_{212}=K_{221}=-\frac{1}{2 a \rho}, K_{222}=\frac{1}{\rho^{3}}$.
Then we have the non-zero components ${ }^{(\alpha)} \Gamma_{j k}^{i}$ of Amari-Chentsov connections on the Pareto
model as,
${ }^{(\alpha)} \Gamma_{11}^{1}=-\frac{2+\alpha \rho}{2 a},{ }^{(\alpha)} \Gamma_{11}^{2}=-\frac{\rho^{3}}{a^{2}},{ }^{(\alpha)} \Gamma_{12}^{1}=^{(\alpha)} \Gamma_{21}^{1}=\frac{1}{\rho},{ }^{(\alpha)} \Gamma_{12}^{2}=^{(\alpha)} \Gamma_{21}^{2}=-\frac{\alpha \rho}{2 a},{ }^{(\alpha)} \Gamma_{22}^{1}=-\frac{\alpha a}{2 \rho^{3}}$,
${ }^{(\alpha)} \Gamma_{22}^{2}=-\frac{1-\alpha}{\rho}$.
Theorem 3.

$$
k^{(\alpha)}=-2 \alpha-2
$$

In particular, $\boldsymbol{k}^{(0)}=\mathbf{- 2}$, i.e. Riemannian metrics on such manifold has the constant negative curvature.

LOGISTIC 2-DIM MODEL

The distribution function is $\boldsymbol{F}(\boldsymbol{x} \mid \boldsymbol{a}, \boldsymbol{b})=\frac{1}{(1+\exp (-a \boldsymbol{x}-\boldsymbol{b}))}$, the non-zero components of the structure are

$$
\iota_{i j}=\frac{1}{3 a^{2}}\left(\begin{array}{cc}
b^{2} \\
\begin{array}{c}
\pi^{2} \\
-a^{2}
\end{array}+1 & -a b \\
a^{2}
\end{array}\right)
$$

$K_{111}=\frac{1}{6 a^{3}}, \quad K_{122}=K_{212}=K_{211}=\frac{1}{6 a}, K_{211}=K_{112}=K_{121}=-\frac{b}{3 a^{2}}$
$K_{111}=\frac{1}{a^{3}}, K_{122}=\boldsymbol{K}_{212}=\boldsymbol{K}_{211}{ }^{(2)} \boldsymbol{\Gamma}_{j k}^{i}$ of Amari-Chentsov connections on the logistic model as
${ }^{(2)} \Gamma_{11}^{1}=\frac{2 \pi^{2}-3}{\left(\pi^{2}+3\right) a},{ }^{(2)} \Gamma_{11}^{2}=-\frac{9 b}{\left(\pi^{2}+3\right) a^{2}},{ }^{(2)} \Gamma_{12}^{2}={ }^{(2)} \Gamma_{21}^{2}=\frac{1}{a}$
Hence the logistic model has the constant 2-curvature

$$
k^{(2)}=-\frac{162}{\left(\pi^{2}+3\right)^{2}}
$$

so it is a conjugate symmetric manifold [6].

USEFUL IMPROPER INTEGRALS

$\int_{a}^{+\infty} x^{-\rho-1} d x=\frac{1}{\rho a^{\pi}} ; \int_{a}^{+\infty} \log x \cdot x^{-\rho-1} d x=\frac{1+\rho \log a}{\rho^{2} a^{p}} ; \int_{a}^{+\infty} \log ^{2} x \cdot x^{-\rho-1} d x=\frac{\left(1+\rho \log a^{2}\right)^{2}+1}{\rho^{2} a^{0}} ;$
$\int_{a}^{+\infty} \log ^{3} x \cdot x^{-\rho-1} d x=\frac{(1+\rho \log a)^{3}+3(3+\rho \log a)+2}{\rho^{\left(a a^{+}\right.}}$;
$\int_{0}^{+\infty} x^{n k-1} \cdot e^{-x^{k}} d x=\frac{(n-1)!}{k},(n \in N, k>0) ; \int_{0}^{+\infty} \log x \cdot x^{k-1} \cdot e^{-x^{k}} d x=-\frac{\gamma}{k^{2}}$;
$\int_{0}^{+\infty} \log ^{2} x \cdot x^{k-1} \cdot e^{-x^{k}} d x=\frac{\pi^{2}+6 \gamma^{2}}{6 k^{3}}$;
$\int_{0}^{+\infty} \log ^{3} x \cdot x^{k-1} \cdot e^{-x^{k}} d x=-\frac{4 \zeta(3)+\gamma \pi^{2}+2 \gamma^{3}}{2 k^{4}}$,
where $n \in N, k>0 ; \gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty} \frac{1}{k}-\log n\right) \approx 0,577 \ldots$ is Euler-Mascheroni constant,
$\zeta(3)=\sum_{k=1}^{\infty} \frac{1}{k^{3}} \approx 1,202 \ldots$ is Apery's constant.

COMPARISON OF CURVATURES

$\nabla^{\alpha}{ }_{\text {п }}$	Normal ${ }^{\text {a }}$	Logisticr	Pareto ${ }^{\text {a }}$	Weibull ${ }^{\text {a }}$
$\alpha=\cdot 0$ ㅁ	-0,5ㅁ	$\approx-1,4$ -	-2ㅁ	$\approx-1,22$ व
$\alpha=1{ }^{\text {a }}$	0ㅁ	-	-4믐	$\approx 0,59$ п
$\alpha=\cdot 2$ ㅁ	1,5ㅁ	$\approx-0,98$ ㅁ	-6ㅁ	¢

