Generalized Geometric Quantum Speed Limits

D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and D. O. Soares-Pinto

Phys. Rev. X 6, 021031 (2016)

UNITED KINGDOM · CHINA · MALAYSIA

BACKGROUND

QUANTUM SPEED LIMITS

- Quantum speed limits are lower bounds to the time τ that a quantum system takes to undergo a given dynamics between an initial and a target quantum state.
- Establishing general and tight quantum speed limits is crucial to assess how fast quantum technologies can

QUANTUM STATE DISTINGUISHABILITY

- The set of states of a quantum system is the Riemannian \bullet manifold of density operators ρ over the system Hilbert space.
- It is natural to use any of the possible **contractive** Riemannian metrics defined on such set of states to distinguish any two of its points.

ultimately be.

Two examples of quantum speed limits for a unitary dynamics between two orthogonal pure states and generated by a time-independent Hamiltonian H are:

 $\tau \geq \frac{\pi\hbar}{2E}$

Mandelstam-Tamm bound

Margolus-Levitin bound

where $(\Delta E)^2 = \langle (H - \langle H \rangle)^2 \rangle$ and $E = \langle H \rangle$.

Another example valid for any physical dynamics γ is:

 $\mathcal{L}^{BU}(\rho_0, \rho_\tau) \leq \ell_{\nu}^{BU} \ (\rho_0, \rho_\tau)$

where \mathcal{L}^{BU} and ℓ_{γ}^{BU} are, respectively, the geodesic distance and the length of the path γ corresponding to A Riemannian metric is contractive if the corresponding geodesic distance \mathcal{L} contracts under physical maps Λ :

 $\mathcal{L}(\rho,\sigma) \geq \mathcal{L}(\Lambda(\rho),\Lambda(\sigma))$

According to the Morozova, Čhencov, and Petz theorem, such metrics are in one-to-one correspondence with the Morozova-Čhencov functions f as follows:

the Bures-Uhlmann metric.

where ds^2 is the squared infinitesimal distance between the states $\rho = \sum_{i} p_{i} |j\rangle \langle j|$ and $\rho + d\rho$, and $c^f(x,y) \equiv \frac{1}{\gamma f(x/\gamma)}.$

Two notable examples are:

 $c^{BU}(x,y) = \left(\frac{x+y}{2}\right)^{-1}$

Bures-Uhlmann metric

 $c^{WY}(x,y) = \left(\frac{\sqrt{x} + \sqrt{y}}{2}\right)^{-2}$ Wigner-Yanase metric

RESULTS

GENERALIZED GEOMETRIC QUANTUM SPEED LIMITS

We exploit the fact that more than one privileged

WIGNER-YANASE CAN BEAT BURES-UHLMANN!

0.005 0.010 0.015 0.04 0.12 0.08

contractive Riemannian metric appears in quantum mechanics in order to introduce a new infinite family of quantum speed limits valid for any physical process:

 $\mathcal{L}^{f}(\rho_{0},\rho_{\tau}) \leq \ell_{\gamma}^{f}(\rho_{0},\rho_{\tau})$

The contractive Riemannian metric g^{f} whose geodesic is most tailored to the given dynamics γ , i.e., the one minimizing the following tightness indicator:

$$\delta_{\gamma}^{f}(\rho_{0},\rho_{\tau}) \equiv \frac{\ell_{\gamma}^{f}(\rho_{0},\rho_{\tau}) - \mathcal{L}^{f}(\rho_{0},\rho_{\tau})}{\mathcal{L}^{f}(\rho_{0},\rho_{\tau})}$$

provides the tightest geometric quantum speed limit.

