Mismatched Estimation in an Exponential Family

Subrahamanian Moosath K S and Harsha K V

Indian Institute of Space Science and Technology, Trivandrum, India ; Indian Institute of Technology Bombay, Mumbai, India smoosath@iist.ac.in; harshakv@iitb.math.ac.in

IGAIA 2016 conference at Liblice, Czech Republic. 12-17 June 2016

Introduction

- A mismatched estimation problem uses a mismatched model (unfaithful model) instead of the original model for estimation.
- Here we discuss the information geometric approach to the general estimation problem based on a mismatched model in an exponential

Consistency and efficiency of a general mismatched estimator

Theorem

An estimator $\{\hat{u}'_N, N = 1, 2, \dots\}$ for $u \in M^*$ is consistent if and only if $\eta(u) \in M \subset S$ is in the estimating submanifold A'(u) attached to the point $\boldsymbol{u} \in \boldsymbol{M}^*$.

family.

Exponential Family and Mismatched Estimator

Let $S = \{p(\mathbf{x}; \theta) = \exp\{\sum_{i=1}^{n} \theta^{i} \mathbf{x}_{i} - \psi(\theta)\} / \theta \in \mathbf{E} \subseteq \mathbb{R}^{n}\}$ be an *n*-dimensional exponential family, where $\mathbf{x} = (\mathbf{x}_1, \cdots, \mathbf{x}_n)$ - set of random variables and $\theta = (\theta^1, \cdots, \theta^n)$ is the canonical coordinate. Since S is dually flat space, the dual coordinate $\eta = (\eta_1, \dots, \eta_n)$ of θ is defined by $\eta_i = \int x_i p(x; \theta) dx$, [?].

Now let $M = \{q(x; u) \mid u = (u^a) \in \mathbb{R}^m\}$ be an *m*-dimensional curved exponential family. Consider a mismatched model $M^* = \{q'(x; u) \mid u = (u^a) \in \mathbb{R}^m\}$ corresponding to the original model

M. Let the embedding functions of **M** and M^* in S be $\theta(u)$ and $\theta'(u)$ respectively. Let $\eta(u)$ and $\eta'(u)$ be the corresponding dual representations.

To estimate the parameter $u \in M$, we use M^* instead of M. Let $\mathbf{x}_N = (\mathbf{x}^1, \cdots, \mathbf{x}^N)$ be N independent observations from $q(\mathbf{x}; \mathbf{u}) \in M$. Then the observed point $\bar{x} = (\bar{x}_1, \cdots, \bar{x}_n)$ defines a distribution in Swhose η -coordinate is given by $\hat{\eta}_N = \bar{x}$. \bar{x} is a sufficient statistic for M^* .

Theorem

A consistent estimator $\{\hat{u}'_N, N = 1, 2, \dots\}$ for $u \in M^*$ is first order efficient if and only if A'(u) is orthogonal to M at the intersecting point $\eta(u) \in M$.

Mismatched Maximum Likelihood Estimator (MLE)

Ozumi et al. [?] stated certain conditions for MLE based on a mismatched model to be consistent and efficient. We gave a theoretical formulation of these results and a detailed proof of the same.

Theorem

Let \hat{u}' be the MLE in M^* . Then \hat{u}' is a consistent estimator of u iff

$$q'(x; u) = \arg\min_{v \in M^*} D_{-1}(q(x; u), q'(x; v))$$

Theorem

Let \hat{u}' be the consistent MLE in M^* . Then \hat{u}' is first order efficient iff

$$q(x; u) = \arg\min_{v \in M} D_{-1}(q'(x; u), q(x; v))$$
 (6)

where D_{-1} is the (-1)-divergence or the Kullback-Leibler divergence.

Corollary

The estimator \hat{u}'_{N} based on mismatched model M^* is represented as a mapping f'_N from S to M^*

 $f'_N: \mathcal{S} \longrightarrow M^*$ where $\hat{\eta}_N \mapsto \hat{u}'_N = f'_N(\hat{\eta}_N)$

The ancillary manifold or the estimating submanifold $A'_{N}(u)$ corresponding to the point $u \in M^*$ associated with f'_N is defined as

$$A'_{N}(u) = f'^{-1}_{N}(u) = \{\eta = (\eta_{i}) \in S / f'_{N}(\eta) = u\}$$
(2)

That is, $A'_{N}(u)$ is the set of all points η in S which are mapped to $u \in M^{*}$ by the estimator f'_N .

Now we analyze the characteristics of an estimator $\{\hat{u}'_N, N = 1, 2, \dots\}$ in M^* using the geometric properties of the ancillary submanifold $A'_N(u)$. Let

$$A'(u) = \lim_{N \to \infty} A'_N(u)$$
(3)

Also let $A_N(u)$ be the ancillary manifold corresponding to the point $u \in M$ and let

$$A(u) = \lim_{N \to \infty} A_N(u) \tag{4}$$

Let \hat{u}' be the MLE in M^* . Let γ be the (-1)-geodesic connecting $q(x; u) \in M$ and

 $q'(x; u) \in M^*$.

Then

(1)

- 1 The MLE \hat{u}' is consistent iff γ is orthogonal to M^* .
- 2 The consistent MLE \hat{u}' is first order efficient iff γ is orthogonal to both **M** and **M***.

Conclusion

- An information geometric approach to the mismatched estimation problem in an exponential family is given.
- We proved a necessary and sufficient condition for an estimator based on a mismatched model to be consistent and efficient.
- Also we gave a theoretical formulation of the consistency and efficiency of the mismatched MLE.

We express our sincere gratitude to Prof. Shun-ichi Amari for the fruitful discussions.

References

S.I. Amari, *Differential-Geometrical methods in Statistics*, Lecture Notes in Statistics, Springer-Verlab, New York, 28, 1985.

Amari, S. and Nagaoka, H. (2000). Methods of Information Geometry, Translations of Mathematical Monographs. Oxford University Press: Oxford.

Oizumi, M. Okada, M. and Amari, S. (2011). Information loss associated with imperfect observation and mismatched decoding. Frontiers in Computational Neuroscience, 5(9): 2011.

(5)