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Abstract
We show conditions under which the infinite-dimensional Log-Hilbert-Schmidt distance between RKHS
covariance operators can be approximated by the finite-dimensional Log-Euclidean distance.

Log-Hilbert-Schmidt distance

Log-Euclidean distance. This is the geodesic distance between two matrices A,B ∈ Sym++(n) in the Log-
Euclidean metric [1]

dlogE(A,B) = || log(A)− log(B)||F .

Log-Hilbert-Schmidt distance. This generalizes the Log-Euclidean distance to the infinite-dimensional
manifold Σ(H) of positive definite Hilbert-Schmidt operators on a separable Hilbert space H [2]. For two
operators A+ γI > 0,B + µI > 0, A,B ∈ HS(H), γ, µ > 0,

dlogHS[(A+ γI), (B + µI)] = || log(A+ γI)− log(B + µI)||eHS,

with the extended Hilbert-Schmidt norm ||A+ γI||2eHS = ||A||2HS + γ2.

RKHS and covariance operators
Reproducing kernel Hilbert spaces (RKHS) and feature maps. Let X be any non-empty set, K a positive
definite kernel on X × X , with corresponding RKHS HK . Then ∃ a separable Hilbert space H, which can
be identified withHK , and a corresponding feature map Φ : X → H, so that

K(x, y) = 〈Φ(x),Φ(y)〉H ∀(x, y) ∈ X × X .

Covariance operators. Let x = [x1, . . . , xm] be a data matrix randomly sampled from X according to some
probability distribution. The feature map Φ gives the bounded linear operator Φ(x) : Rm → H, defined by

Φ(x)b =
m∑
j=1

bjΦ(xj), b ∈ Rm.

Φ(x) can be viewed as a (infinite) data matrix Φ(x) = [Φ(x1), . . . ,Φ(xm)] inH, with covariance operator

CΦ(x) =
1

m
Φ(x)JmΦ(x)∗ : H → H, Jm = Im −

1

m
1m1Tm.

For two covariance operators CΦ(x) and CΦ(y), the Log-HS distance

dlogHS = || log(CΦ(x) + γIH)− log(CΦ(y) + µIH)||eHS (1)

has a closed form expressed in terms of Gram matrices.

Finite-dimensional approximations
The distance in Eq. (1) can be computationally intensive on a large set of covariance operators.
Approximate feature map Φ̂D : X → RD, D << dim(H), so that

〈Φ̂D(x), Φ̂D(y)〉RD = K̂D(x, y) ≈ K(x, y), lim
D→∞

K̂D(x, y) = K(x, y), ∀(x, y) ∈ X × X .

Approximate covariance operator CΦ̂D(x) = 1
m Φ̂D(x)JmΦ̂D(x)T : RD → RD.

Approximate Log-Hilbert-Schmidt distance∥∥∥log
(
CΦ̂D(x) + γID

)
− log

(
CΦ̂D(y) + µID

)∥∥∥
F
. (2)

Convergence. We need to determine whether (2) is truly a finite-dimensional approximation of (1), i.e.

lim
D→∞

∥∥∥log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + µID)
∥∥∥
F

= || log(CΦ(x) + γIH)− log(CΦ(y) + µIH)||eHS.

Theorem 1. Assume that γ 6= µ, γ > 0, µ > 0. Then

lim
D→∞

∥∥∥log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + µID)
∥∥∥
F

=∞.

Theorem 2. Assume that γ = µ > 0. Then

lim
D→∞

∥∥∥log(CΦ̂D(x) + γID)− log(CΦ̂D(y) + γID)
∥∥∥
F

= || log(CΦ(x) + γIH)− log(CΦ(y) + γIH)||eHS.

Random Fourier approximation
LetK : Rn×Rn → R be of the formK(x, y) = k(x−y) for some
positive definite function k on Rn. By Bochner’s Theorem, ∃ a
finite positive measure ρ on Rn s.t.

K(x, y) =

∫
Rn
e−i〈ω,x−y〉dρ(ω) =

∫
Rn

cos(〈ω, x− y〉)ρ(ω)dω.

Without loss of generality, we can assume that ρ is a probabil-

ity measure. For the Gaussian kernel K(x, y) = e−
||x−y||2

σ2 , we

have ρ(ω) = (σ
√
π)n

(2π)n e−
σ2||ω||2

4 ∼ N
(
0, 2

σ2 In
)
. To approximate

K(x, y), we sample D points {ωj}Dj=1 from the distribution ρ
and compute the empirical version

K̂D(x, y) =
1

D

D∑
j=1

cos(〈ωj , x− y〉)
D→∞−−−−→ K(x, y) a.s.

The approximate random Fourier feature map is

Φ̂D(x) =
1√
D

(cos(〈ωj , x〉), sin(〈ωj , x〉))Dj=1 ∈ R2D.

Example: Image classification

Method Accuracy
Approx LogHS 53.91%(±4.34)

Log-HS 56.74%(±2.87)
Hilbert-Schmidt 50.17%(±2.17%)
Log-Euclidean 42.70%(±3.45)
Euclidean 26.87%(±3.52%)

The classification of fish images ac-
quired from live underwater videos.
The dataset contains 23 species of
fish. At each pixel, the color values,
red, green, blue, are sampled. All
classifications were done by Gaussian
Support Vector Machine, using the cor-
responding distances. Approx Log-HS,
Log-HS, and Hilbert-Schmidt distances
were computed with the Gaussian ker-
nel. Approx Log-HS, using the random
Fourier feature, D = 200, is 50 times
faster to compute than Log-HS [3].
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