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1 Introduction

Let F be the space of all probability density functions with respect to a
carrier measure A, and let v be a one-to-one mapping from F to F.

Definition 1 Let a functional D on F X F be a quasi-divergence if

D(g, f) = 0 (1)
with equality if and only if f = v(g). Further D is called a divergence if
v 1S an identity mapping.

Let us take a way to introduce a class of quasi divergences. For this fix a
function ¢ that is a strictly increasing and concave function. Thus we define

a @ cross entropy as
- [ or@)g(@ldnw). )

The corresponding loss for a data set {xq,...,zn} is given as

)= 3" dlfglai) 3)
1=1

An argument from a variational calculus leads to the following inequality:

Proposition 1 It holds for any f and g of F that
Cylg, f) > Cylg,&(9)), (4)

o 1 (¢/g). Here ¢ > 0 is a normalizing factor satisfying

/W © Var(z) =1 (5)

As a result, we can define

Dylg. f) = / (6(E(9(@)) — 6(f(2))}g(a)dA(2), (6)

where Dy 1s called a quasi-divergence with the mapping §.

where £(g) =

Remark 1 There are two ways to make a divergence from the quasi-
divergence. First, if we deform D as

Di(g. f) = Dg(6™ (9), /), (7)
then D;’;(g f)is a dz’vergence gz’ven as in Definition 1. In effect,

/¢ o Y\ //cb’ 8

which s nothing but the genemlzzed KL divergence |1 /

By {6(9(X)) — 6(F(X))}, (9
where E<g¢> denotes the generalized expectation with respect to g. For
example, if we take a specific function as ¢(f) = (fﬁ —1)/3, then

1 1

Dyfo.f) = 5(1= [a P ( [4 ) o

which 1s proportional to the a-divergence with a relation to a = 28 — 1.
Second, we deform D as

D3 (g, f) = Dglg, &(f

- /{¢

— ¢(&g(x)))rg(x)dA(z). (1)

If we take as ¢(f) = fﬁ —1)/8,
x 1 ffl—ﬁgd)\ 1 15]
D (g, f) = —= - — 1=Bd\ , 12
s (9, [) ﬁ[(fflﬁd)\)ﬁ (/9 ) (12)

which is nothing but the vy-power divergence when v = 3/(1 — 3) [2].
2 Probability density estimation

We consider a simple mixture model
folz) = 0" f(x), (13)
7fJ) and 0 = (917'” )

J
0) +w > 6], (14)
j=1

where f(x) = 0 7). Then we consider

(f1(@), -

E¢((9,Ld) = L

where Ly(0) = 1/n /" 1gb(z] 00 f](azz)) 0—1—Z] 10 and 0; > 0

for 4 = 1,...,J. An non-informative probability density function fo( ) is
introduced to enable us to do selection of density functions.
Then we take the gradient descent approach similar to that of [3], where

the gradient g(6) = (g1(0),g2(0),...,g7(0))" is defined by

[ a£¢()+w0j if@j#o
8j(0) = | g7 Lol6) —wsign(grLy(8)) if 6; =0 and |g5-Ly(6)] > w (15)
\ 0 otherwise,
for j =1,...,J. The range of optimization for a scalar p is given as

sign(6;) = —sign(g;(6)) 0} (16)

9.
0 f) = min { ’
dgel0) = min gj(0)

1.Set 6y =1 and 0 = 0for j=1,...,J.
2. Fort=2,...,T,
(a) Update Qg-t) = max (O, Qj(-t_l) + Popt gj(H(t_l))) for j=1,...,

£¢(9< Ut p g0, w) (17)

J where

0§p<pedge(6(t_1))

(b) Update Hét) = max (0,1 — S s )).

=177
3. Apply the EM algorithm to f;(x) (7 # 0) in the active set A with the initial value Qg.T)
to obtain ;. And set 6; = 0 for f;(z) in A°.
4. Output

folx) = / d). (18)
: jlef] /¢' jlef] (@)

3 Simulation studies

We generate random variables from the normal mixture as
v~ 7N(0, 1) + T Ny, Ip) + 7N (i, L), i = 1,.on (19)

where my = m =my = 1/3, g = (p, ..., ) ', o = —pg and n = 90. And
we consider fo(x) = f(x,0,1000 x I,). We compare the performance of lasso
algorithm based on ¢(t) = log(t) and (¢7 — 1)/8 with 8 = 0.1 and 3 = 0.9,
and the kernel density estimation method by [4] using the R package ks.
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Figure 1. Boxplots of log of MSE for lasso method (lasso(log), lasso(beta=0.1) and
lasso(beta=0.9)) and ks and EM-like algorithm (EM(log) EM(beta=0.1), EM(beta=0.9))

based on 50 repetitions of simulations.
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