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1 Introduction

Let F be the space of all probability density functions with respect to a
carrier measure λ, and let ν be a one-to-one mapping from F to F .

Definition 1 Let a functional D on F × F be a quasi-divergence if

D(g, f ) ≥ 0 (1)

with equality if and only if f = ν(g). Further D is called a divergence if
ν is an identity mapping.

Let us take a way to introduce a class of quasi divergences. For this fix a
function ϕ that is a strictly increasing and concave function. Thus we define
a ϕ cross entropy as

Cϕ(g, f ) = −
∫

ϕ(f (x))g(x)dλ(x). (2)

The corresponding loss for a data set {x1, . . . , xn} is given as

Lϕ(θ) = −1

n

n∑
i=1

ϕ(fθ(xi)). (3)

An argument from a variational calculus leads to the following inequality:

Proposition 1 It holds for any f and g of F that

Cϕ(g, f ) ≥ Cϕ(g, ξ(g)), (4)

where ξ(g) = ϕ′−1
(c/g). Here c > 0 is a normalizing factor satisfying∫

ϕ′−1
( c

g(x)

)
dλ(x) = 1. (5)

As a result, we can define

Dϕ(g, f ) =

∫
{ϕ(ξ(g(x))) − ϕ(f (x))}g(x)dλ(x), (6)

where Dϕ is called a quasi-divergence with the mapping ξ.

Remark 1 There are two ways to make a divergence from the quasi-
divergence. First, if we deform Dϕ as

D∗
ϕ(g, f ) = Dϕ(ξ−1(g), f ), (7)

then D∗
ϕ(g, f ) is a divergence given as in Definition 1. In effect,

D∗
ϕ(g, f ) =

∫
ϕ(g(x)) − ϕ(f (x))

ϕ′(g(x))
dλ(x)/

∫
1

ϕ′(g(x))
dλ(x), (8)

which is nothing but the generalized KL divergence [1]

E(ϕ)
g {ϕ(g(X)) − ϕ(f (X))}, (9)

where E(ϕ)
g denotes the generalized expectation with respect to g. For

example, if we take a specific function as ϕ(f ) = (fβ − 1)/β, then

D∗
ϕ(g, f ) =

1

β

(
1 −

∫
g1−βfβdλ

)( ∫
g1−βdλ

)−1
, (10)

which is proportional to the α-divergence with a relation to α = 2β − 1.
Second, we deform Dϕ as

D∗∗
ϕ (g, f ) = Dϕ(g, ξ(f ))

= −
∫
{ϕ(ξ(f (x))) − ϕ(ξ(g(x)))}g(x)dλ(x). (11)

If we take as ϕ(f ) = (fβ − 1)/β,

D∗∗
ϕ (g, f ) = −1

β

[ ∫
f

β
1−βgdλ( ∫

f
1

1−βdλ
)β

−
( ∫

g
1

1−βdλ
)1−β

]
, (12)

which is nothing but the γ-power divergence when γ = β/(1 − β) [2].

2 Probability density estimation

We consider a simple mixture model

fθ(x) = θ⊤f (x), (13)

where f (x) = (f1(x), · · · , fJ) and θ = (θ1, · · · , θJ). Then we consider

Lϕ(θ, ω) = Lϕ(θ) + ω

J∑
j=1

|θj|, (14)

where Lϕ(θ) = 1/n
∑n

i=1 ϕ
( ∑J

j=0 θjfj(xi)
)
, θ0 = 1−

∑J
j=1 θj and θj ≥ 0

for j = 1, . . . , J . An non-informative probability density function f0(x) is
introduced to enable us to do selection of density functions.

Then we take the gradient descent approach similar to that of [3], where
the gradient g(θ) = (g1(θ), g2(θ), . . . , gJ(θ))⊤ is defined by

gj(θ) =


∂

∂θj
Lϕ(θ) + ωθj if θj ̸= 0

∂
∂θj

Lϕ(θ) − ωsign( ∂
∂θj

Lϕ(θ)) if θj = 0 and | ∂
∂θj

Lϕ(θ)| > ω

0 otherwise,

(15)

for j = 1, . . . , J . The range of optimization for a scalar ρ is given as

ρedge(θ) = min
j=1,...,J

{ θj

gj(θ)

∣∣∣ sign(θj) = −sign(gj(θ)) ̸= 0
}

. (16)

1. Set θ
(1)
0 = 1 and θ

(1)
j = 0 for j = 1, . . . , J .

2. For t = 2, . . . , T ,

(a) Update θ
(t)
j = max

(
0, θ

(t−1)
j + ρopt gj(θ

(t−1))
)

for j = 1, . . . , J where

ρopt = argmax
0≤ρ≤ρedge(θ

(t−1))

Lϕ

(
θ(t−1) + ρ g(θ(t−1)), ω

)
(17)

(b) Update θ
(t)
0 = max

(
0, 1 −

∑J
j=1 θ

(t)
j

)
.

3. Apply the EM algorithm to fj(x) (j ̸= 0) in the active set A with the initial value θ
(T )
j

to obtain θ̂j. And set θ̂j = 0 for fj(x) in Ac.

4. Output

f̂ϕ(x) =
1

ϕ′
( ∑J

j=1 θ̂jfj(x)
)/ ∫

1

ϕ′
( ∑J

j=1 θ̂jfj(x)
)dλ. (18)

3 Simulation studies

We generate random variables from the normal mixture as

xi ∼ π0N(0, Ip) + π1N(µ1, Ip) + π2N(µ2, Ip), i = 1, . . . , n (19)

where π0 = π1 = π2 = 1/3, µ1 = (µ, . . . , µ)⊤, µ2 = −µ1 and n = 90. And
we consider f0(x) = f (x, 0, 1000×Ip). We compare the performance of lasso

algorithm based on ϕ(t) = log(t) and (tβ − 1)/β with β = 0.1 and β = 0.9,
and the kernel density estimation method by [4] using the R package ks.
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(a)p = 5 µ = 1
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(b)p = 10 µ = 1
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(c)p = 5 µ = 3
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(d)p = 10 µ = 3

Figure 1. Boxplots of log of MSE for lasso method (lasso(log), lasso(beta=0.1) and
lasso(beta=0.9)) and ks and EM-like algorithm (EM(log) EM(beta=0.1), EM(beta=0.9))
based on 50 repetitions of simulations.
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