A simple mixture model for probability density estimation based on a quasi divergence

Osamu Komori ${ }^{1,2}$ and Shinto Eguchi ${ }^{2} \quad{ }^{1}$ University of Fukui, ${ }^{2}$ The Institute of Statistical Mathematics, Japan

1 Introduction

Let \mathcal{F} be the space of all probability density functions with respect to a carrier measure λ, and let ν be a one-to-one mapping from \mathcal{F} to \mathcal{F}.
Definition 1 Let a functional D on $\mathcal{F} \times \mathcal{F}$ be a quasi-divergence if

$$
\begin{equation*}
D(g, f) \geq 0 \tag{1}
\end{equation*}
$$

with equality if and only if $f=\nu(g)$. Further D is called a divergence if ν is an identity mapping.
Let us take a way to introduce a class of quasi divergences. For this fix a function ϕ that is a strictly increasing and concave function. Thus we define a ϕ cross entropy as

$$
\begin{equation*}
C_{\phi}(g, f)=-\int \phi(f(x)) g(x) d \lambda(x) \tag{2}
\end{equation*}
$$

The corresponding loss for a data set $\left\{x_{1}, \ldots, x_{n}\right\}$ is given as

$$
\begin{equation*}
L_{\phi}(\theta)=-\frac{1}{n} \sum_{i=1}^{n} \phi\left(f_{\theta}\left(x_{i}\right)\right) \tag{3}
\end{equation*}
$$

An argument from a variational calculus leads to the following inequality:
Proposition 1 It holds for any f and g of \mathcal{F} that

$$
\begin{equation*}
C_{\phi}(g, f) \geq C_{\phi}(g, \xi(g)) \tag{4}
\end{equation*}
$$

where $\xi(g)=\phi^{-1}(c / g)$. Here $c>0$ is a normalizing factor satisfying

$$
\begin{equation*}
\int \phi^{\prime-1}\left(\frac{c}{g(x)}\right) d \lambda(x)=1 \tag{5}
\end{equation*}
$$

As a result, we can define

$$
\begin{equation*}
D_{\phi}(g, f)=\int\{\phi(\xi(g(x)))-\phi(f(x))\} g(x) d \lambda(x) \tag{6}
\end{equation*}
$$

where D_{ϕ} is called a quasi-divergence with the mapping ξ.
Remark 1 There are two ways to make a divergence from the quasidivergence. First, if we deform D_{ϕ} as

$$
\begin{equation*}
D_{\phi}^{*}(g, f)=D_{\phi}\left(\xi^{-1}(g), f\right) \tag{7}
\end{equation*}
$$

then $D_{\phi}^{*}(g, f)$ is a divergence given as in Definition 1. In effect,

$$
\begin{equation*}
D_{\phi}^{*}(g, f)=\int \frac{\phi(g(x))-\phi(f(x))}{\phi^{\prime}(g(x))} d \lambda(x) / \int \frac{1}{\phi^{\prime}(g(x))} d \lambda(x) \tag{8}
\end{equation*}
$$

which is nothing but the generalized $K L$ divergence [1]

$$
\begin{equation*}
\mathbb{E}_{g}^{(\phi)}\{\phi(g(X))-\phi(f(X))\} \tag{9}
\end{equation*}
$$

where $\mathbb{E}_{g}^{(\phi)}$ denotes the generalized expectation with respect to g. For example, if we take a specific function as $\phi(f)=\left(f^{\beta}-1\right) / \beta$, then

$$
\begin{equation*}
D_{\phi}^{*}(g, f)=\frac{1}{\beta}\left(1-\int g^{1-\beta} f^{\beta} d \lambda\right)\left(\int g^{1-\beta} d \lambda\right)^{-1} \tag{10}
\end{equation*}
$$

which is proportional to the α-divergence with a relation to $\alpha=2 \beta-1$. Second, we deform D_{ϕ} as

$$
\begin{align*}
D_{\phi}^{* *}(g, f) & =D_{\phi}(g, \xi(f)) \\
& =-\int\{\phi(\xi(f(x)))-\phi(\xi(g(x)))\} g(x) d \lambda(x) \tag{11}
\end{align*}
$$

If we take as $\phi(f)=\left(f^{\beta}-1\right) / \beta$,

$$
\begin{equation*}
D_{\phi}^{* *}(g, f)=-\frac{1}{\beta}\left[\frac{\int f^{\frac{\beta}{1-\beta}} g d \lambda}{\left(\int f^{\frac{1}{1-\beta}} d \lambda\right)^{\beta}}-\left(\int g^{\frac{1}{1-\beta}} d \lambda\right)^{1-\beta}\right] \tag{12}
\end{equation*}
$$

which is nothing but the γ-power divergence when $\gamma=\beta /(1-\beta)$ [2].

2 Probability density estimation

We consider a simple mixture model

$$
\begin{equation*}
f_{\theta}(x)=\theta^{\top} f(x) \tag{13}
\end{equation*}
$$

where $f(x)=\left(f_{1}(x), \cdots, f_{J}\right)$ and $\theta=\left(\theta_{1}, \cdots, \theta_{J}\right)$. Then we consider

$$
\begin{equation*}
\mathcal{L}_{\phi}(\theta, \omega)=\mathcal{L}_{\phi}(\theta)+\omega \sum_{j=1}^{J}\left|\theta_{j}\right| \tag{14}
\end{equation*}
$$

where $\mathcal{L}_{\phi}(\theta)=1 / n \sum_{i=1}^{n} \phi\left(\sum_{j=0}^{J} \theta_{j} f_{j}\left(x_{i}\right)\right), \theta_{0}=1-\sum_{j=1}^{J} \theta_{j}$ and $\theta_{j} \geq 0$ for $j=1, \ldots, J$. An non-informative probability density function $f_{0}(x)$ is introduced to enable us to do selection of density functions.

Then we take the gradient descent approach similar to that of [3], where the gradient $\mathbf{g}(\theta)=\left(\mathrm{g}_{1}(\theta), \mathrm{g}_{2}(\theta), \ldots, \mathrm{g}_{J}(\theta)\right)^{\top}$ is defined by

$$
\mathrm{g}_{j}(\theta)= \begin{cases}\frac{\partial}{\partial \theta_{j}} \mathcal{L}_{\phi}(\theta)+\omega \theta_{j} & \text { if } \theta_{j} \neq 0 \tag{15}\\ \frac{\partial}{\partial \theta_{j}} \mathcal{L}_{\phi}(\theta)-\omega \operatorname{sign}\left(\frac{\partial}{\partial \theta_{j}} \mathcal{L}_{\phi}(\theta)\right) & \text { if } \theta_{j}=0 \text { and }\left|\frac{\partial}{\partial \theta_{j}} \mathcal{L}_{\phi}(\theta)\right|>\omega(\\ 0 & \text { otherwise }\end{cases}
$$

for $j=1, \ldots, J$. The range of optimization for a scalar ρ is given as

$$
\begin{equation*}
\rho_{\text {edge }}(\theta)=\min _{j=1, \ldots, J}\left\{\left.\frac{\theta_{j}}{\mathrm{~g}_{j}(\theta)} \right\rvert\, \operatorname{sign}\left(\theta_{j}\right)=-\operatorname{sign}\left(\mathrm{g}_{j}(\theta)\right) \neq 0\right\} \tag{16}
\end{equation*}
$$

1. Set $\theta_{0}^{(1)}=1$ and $\theta_{j}^{(1)}=0$ for $j=1, \ldots, J$.
2. For $t=2, \ldots, T$,
(a) Update $\theta_{j}^{(t)}=\max \left(0, \theta_{j}^{(t-1)}+\rho_{\text {opt }} \mathbf{g}_{j}\left(\theta^{(t-1)}\right)\right)$ for $j=1, \ldots, J$ where

$$
\begin{equation*}
\rho_{\text {opt }}=\underset{0 \leq \rho \leq \rho_{\text {edge }}\left(\theta^{(t-1)}\right)}{\operatorname{argmax}} \mathcal{L}_{\phi}\left(\theta^{(t-1)}+\rho \mathbf{g}\left(\theta^{(t-1)}\right), \omega\right) \tag{17}
\end{equation*}
$$

(b) Update $\theta_{0}^{(t)}=\max \left(0,1-\sum_{j=1}^{J} \theta_{j}^{(t)}\right)$.
3. Apply the EM algorithm to $f_{j}(x)(j \neq 0)$ in the active set \mathcal{A} with the initial value $\theta_{j}^{(T)}$ to obtain $\hat{\theta}_{j}$. And set $\hat{\theta}_{j}=0$ for $f_{j}(x)$ in \mathcal{A}^{c}.
4. Output

$$
\begin{equation*}
\hat{f}_{\phi}(x)=\frac{1}{\phi^{\prime}\left(\sum_{j=1}^{J} \hat{\theta}_{j} f_{j}(x)\right)} / \int \frac{1}{\phi^{\prime}\left(\sum_{j=1}^{J} \hat{\theta}_{j} f_{j}(x)\right)} d \lambda \tag{18}
\end{equation*}
$$

3 Simulation studies

We generate random variables from the normal mixture as

$$
\begin{equation*}
x_{i} \sim \pi_{0} N\left(0, I_{p}\right)+\pi_{1} N\left(\mu_{1}, I_{p}\right)+\pi_{2} N\left(\mu_{2}, I_{p}\right), i=1, \ldots, n \tag{19}
\end{equation*}
$$

where $\pi_{0}=\pi_{1}=\pi_{2}=1 / 3, \mu_{1}=(\mu, \ldots, \mu)^{\top}, \mu_{2}=-\mu_{1}$ and $n=90$. And we consider $f_{0}(x)=f\left(x, 0,1000 \times I_{p}\right)$. We compare the performance of lasso algorithm based on $\phi(t)=\log (t)$ and $\left(t^{\beta}-1\right) / \beta$ with $\beta=0.1$ and $\beta=0.9$, and the kernel density estimation method by [4] using the R package ks.

Figure 1. Boxplots of \log of MSE for lasso method (lasso(log), lasso(beta=0.1) and lasso(beta=0.9)) and ks and EM-like algorithm (EM(log) EM(beta=0.1), EM(beta=0.9)) based on 50 repetitions of simulations.

References

[1] Eguchi, S., Komori, O and Ohara, A. Information geometry associated with two generalized means (in preparation).
[2] Fujisawa, H. and Eguchi, S. (2008) Robust parameter estimation with a small bias against heavy contamination. Journal of Multivariate Analysis 99, 2053-2081.
[3] Goeman, J. J. (2010) L L penalized estimation in the Cox proportional hazards model.Biometrical Journal 20, 3375-3387.
[4] Duong, T. (2010) ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. Journal of Statistical Software 21, 1-16.

