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Introduction

Deformed exponential family is a generalized notion of an
exponential family which was introduced by Naudts [1].

Here we discuss about certain generalized notions of maximum
likelihood estimator and estimation problem in a deformed
exponential family.

Deformed Exponential Family

We formulate the deformed exponential family using a function F and we
call it as F -exponential family.

Definition
Let F : (0,∞) −→ R be any smooth function satisfying F ′(x) > 0 and
F ′′(x) < 0. Let Z be the inverse function of F . Define the standard form
of an n-dimensional F -exponential family S = {p(x ; θ)} of probability
distributions as

p(x ; θ) = Z(
n∑

i=1

θixi−ψF(θ)) or F (p(x ; θ)) =
n∑

i=1

θixi−ψF(θ) (1)

where x = (x1, · · · , xn) is a set of random variables, θ = (θ1, · · · , θn)
are the parameters and ψF(θ) is determined from the normalization
condition. When F (p) = log p the F -exponential family is the
exponential family.

Dually flat structures of the Deformed Exponential Family

The deformed exponential family has two dually flat structures,
U-geometry by Naudts [1] and χ-geometry by Amari et al. [2].

U-geometry
Naudts [1] defined a divergence of Bregman type on a F -exponential
family by

DF(p, q) =

∫ (∫ p

q
(F (u)− F (q))du

)
dx (2)

This divergence induces a dually flat structure (gDF
,∇DF

,∇D∗F) called
the U-geometry.

χ-geometry
Amari et al. [2] defined a divergence DF on the F -exponential family as

DF(p, r) =
1

hF(θ1)

∫
(F (p)− F (r))

1
F ′(p)

dx (3)

where hF(θ) =
∫ 1

F ′(p)
dx .

DF induces a dually flat structure (gDF,∇DF ,∇D∗F) which is called the
χ-geometry.

U-estimator

Let xN = (x1, · · · , xN) be N independent observations from
p(x ; θ) ∈ S. Eguchi et al. [3] defined the U-estimator θ̂U using an
increasing convex function U by

θ̂U = arg min
θ∈E

LU(θ) (4)

where LU(θ) is the U-loss function defined as

LU(θ) = −
1
N

N∑
i=1

ξ(p(x i; θ)) +

∫
U(ξ(p(x ; θ)))dx ; (U∗)′(t) = ξ(t)

Generalized Cramer-Rao Lower Bound

The U-estimator is not optimal with respect to the Cramer-Rao lower
bound. Naudts [1] defined a generalized Cramer-rao bound. We give a
proof of the generalized Cramer-Rao bound defined by Naudts using a
generalized score vector and an F -escort probability density function.

Define F -expectation and F -variance of a random variable
X ∼ p(x ; θ) as follows

Ep̂F[X ] =
1

hF(θ)

∫
x

1
F ′(p)

dx (5)

VarF(X) = Ep̂F[(X − Ep̂F(X))2] (6)
Theorem
Let X be a random variable with density p(x ; θ) ∈ S. Let T = t(X) be
an unbiased estimator for ψ(θ) so that Ep[t(X)] = ψ(θ). Also let the
F -expectation of t(X) is Ep̂F[t(X)] = φ(θ). Then the F -variance
satisfies the lower bound

VarF(T ) ≥
| ψ′(θ) |2

gN(θ)
(7)

where gN(θ) = hF(θ)gG(θ), gG is the G-metric with G(p) = pF ′(p).

Theorem
Let S = {p(x ; θ) = Z(θx − ψF(θ))} be a F -exponential family and let
η = Ep[x] be the dual coordinate in the U-geometry. Then U-estimator
η̂U = x̄ for η is optimal with respect to the generalized Cramer-Rao
bound defined by Naudts. That is,

VarF(η̂U) =
1

gN(η)
. (8)

Conclusion

A proof of the generalized Cramer-Rao bound defined by Naudts [1]
is given.

Then we give a proof of the result that in a deformed exponential
family the U-estimator for the dual coordinate in the U-geometry is
optimal with respect to the generalized Cramer-Rao bound defined
by Naudts.

We express our sincere gratitude to Prof. Shun-ichi Amari for the fruitful discussions.
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