Estimation in a Deformed Exponential Family
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Generalized Cramer-Rao Lower Bound

Introduction

m Deformed exponential family is a generalized notion of an
exponential family which was introduced by Naudts [1].

m Here we discuss about certain generalized notions of maximum
likelihood estimator and estimation problem in a deformed
exponential family.

Deformed Exponential Family

We formulate the deformed exponential family using a function F and we
call it as F-exponential family.

Definition

Let F : (0, 00) — R be any smooth function satisfying F’(x) > 0 and
F’(x) < 0. Let Z be the inverse function of F. Define the standard form
of an n-dimensional F-exponential family S = {p(x; 0)} of probability
distributions as

p(x;0) = Z(> 0'x;—r(0)) or F(p(x;0)) = > 0'xi—ype(9) (1)
i=1 i=1

where x = (Xxy,--- , Xp) is a set of random variables, 8 = (81, --. ,0")
are the parameters and ¥ r(0) is determined from the normalization
condition. When F(p) = log p the F-exponential family is the
exponential family.

Dually flat structures of the Deformed Exponential Family

The deformed exponential family has two dually flat structures,
U-geometry by Naudts [1] and x-geometry by Amari et al. [2].

U-geometry
Naudts [1] defined a divergence of Bregman type on a F-exponential
family by

p
Df (p, q) = F(u) — F(q))du | d 2
(P, q) /(/q((u) (@) u) X )

This divergence induces a dually flat structure (g2, V2", v2™) called
the U-geometry.

x-geometry
Amari et al. [2] defined a divergence Dr on the F—exponential family as

De(p, ) = / (F(p) — F(r)) 3)

F'(p)
where he(0) = [ = P9

Dr induces a dually flat structure (g°F, VP, VPr) which is called the
x-geometry.

h,.-(91

, x"') be N independent observations from
p(x; 0) € S. Eguchi et al. [3] defined the U-estimator 8y using an
increasing convex function U by

Oy = argmin Ly(0) (4)

Let xy = (X7, - - -

where Ly(0) is the U-loss function defined as

N
Ly(6) = —%,Zs(p(x’: 6)) / U(&(p(x; 0)))dx ; (U*)(t) = &(t)
i=1

The U-estimator is not optimal with respect to the Cramer-Rao lower
bound. Naudts [1] defined a generalized Cramer-rao bound. We give a
proof of the generalized Cramer-Rao bound defined by Naudts using a
generalized score vector and an F-escort probability density function.

Define F-expectation and F-variance of a random variable
X ~ p(x; 0) as follows

(9)

1 1
EaX) = 3y ) ¥ Fi ©
Var(X) = Ep[(X — Ep,(X))? ©)

Theorem

Let X be a random variable with density p(x;0) € S. Let T = #(X) be
an unbiased estimator for 1/(0) so that Ep[t(X)] = ¢ (0). Also let the
F-expectation of #(X) is Ep_[t(X)] = ¢(0). Then the F-variance
satisfies the lower bound

Varg(T) > (7)

where gV(0) = he(0)g9(0), g€ is the G-metric with G(p) = pF’(p).

Theorem

Let S = {p(x;0) = Z(60x — ¢r(0)) } be a F-exponential family and let
n = Ep|x] be the dual coordinate in the U-geometry. Then U-estimator
nu = X for np Is optimal with respect to the generalized Cramer-Rao
bound defined by Naudts. That is,

V. y) = . 8
are(7Nu) p (8)

Conclusion

m A proof of the generalized Cramer-Rao bound defined by Naudts [1]
IS given.

m Then we give a proof of the result that in a deformed exponential
family the U-estimator for the dual coordinate in the U-geometry is
optimal with respect to the generalized Cramer-Rao bound defined
by Naudts.
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