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Abstract

Information geometrical dualistic structure (g(Po), V(Pe) v(Pa)*) induced from the sandwiched Rényi a-
1-a

divergence D,(pllo) = ——log Tr o p o on the quantum state space S(H) is studied. It is shown
g P ala—1) P

that the Riemannian metric g'”) is monotone if and only if & € (—oo — 1] U4, 00), and that the quantum statistical
manifold (S(H), g\P), V{Pa) W (Pa)*) ig dually flat if and only if o = 1.

Introduction

Let us consider a finite quantum state space
S(H)={p€ Liy(H) [ Trp =1},

where H is a finite dimensional Hilbert space. For p, 0 € S(H) and o € (0,1) U (1, 00), let
1

~ 1—o 1—a\ &

Dq(pllo) = ] log Tr (0 20 p O 2a ) (1)
with the convention that D, (p|lo) = oo if @ > 1 and kero ¢ ker p. The quantity (1) is called the
quantum Rényi divergence [8] or the sandwiched Rényi relative entropy [11], and 1s extended to @ = 1
by continuity, to obtain the Umegaki-von Neumann relative entropy:

Di(pllo) = lim Dalpllo) = Trp(logp —loga)}.

The quantity (1) has several desirable properties: amongst others, 1f o > %, 1t 1S monotone under
completely positive trace preserving maps [8, 11, 2, 4]. This property was successfully used in study-
ing the strong converse properties of the channel capacity [11, 7] and the quantum hypothesis testing
problem [6].

For a < 0, however, the quantity (1) does not seem to be a reasonable measure of information [10],
because it takes negative values. We therefore introduce the following “rescaled” version

1 l—a  1-a\ &
log Tr (0 2 p O 20 ) : (2)
ala—1)
for a € R\{0, 1}, which shall be referred to as the sandwiched Rényi a-divergence. As a matter of
fact, the factor é is introduced not only to make D (p||o) positive for all a, but also to establish a
correspondence to the classical information geometry [1]. Note that (2) is continuously extended to
a = 1, but cannot be extended to o = 0 because lim,,_.o Dy (p||c) does not always exist.

The objective of the present study 1s to investigate the information geometrical structure induced
from (2) on the quantum state space S(H).

Dafpllo) =

Main Results

For each a € R\{0}, the quantity (2) enjoys the property:
Dq(pllo) >0 (Vp,0€S8), and Dy(pllc)=0 if p=o.
This fact allows us to introduce, using Eguchi’s method [3], a Riemannian metric:

g P (X, Y) = Du((XY) o)

o=p
and a pair of affine connections:
0T 2) == DXV D] _ . oY 2) == D@l X)) _

A Riemannian metric g on a quantum state space S(H) is called a monotone metric [9] if

holds for all completely positive trace preserving maps v : L(H) — L(H’) and all vector fields
X,Y € TS(H). It is commonly believed that any physical process is represented by a trace preserv-
ing completely positive map. Therefore the monotonicity (3), which implies that the infinitesimal
distance between two nearby states always shrinks by a physical process 7, 1s a natural requirement
for a physical information processing. In this sense, characterizing the monotone metric 1s of funda-
mental importance in quantum information theory.

The main result of the present study 1s the following.

Theorem 1. The induced Riemannian metric g<D o) is monotone under completely positive trace
preserving maps if and only if a € (—oo0, —1| U [%, 00).

As a by-product, we arrive at the following corollary, the latter part of which was first observed by
numerical evaluation [8].

4 N
Corollary 2. The sandwiched Rényi a-divergence D (p||o) is not monotone under completely pos-

itive trace preserving maps if « € (—1,0) U (0, %) Consequently, the original sandwiched Rényi

relative entropy Do (p||o) is not monotone if o € (0, %)

- /

We also studied the dualistic structure (g(Pe), V(D) 57(Da)¥) on the quantum state space S(H), and
obtained the following.

Theorem 3. The quantum statistical manifold (S(H), g\Pa) (Do) (D a>*) is dually flat if and
only if a = 1.

Sketch of Proof of Theorem 1

Let X (™) be the m-representation of a tangent vector X € 7),S defined by X (m) .= x p, and let X }6>
be the e-representation of X defined by

X}@ = f(Ay) " {(Xp)p_l} ,

where f : Ry — R, is a symmetric monotone function satisfying f(1) = 1, and A is the modular
operator associated with p € S(H) defined by

Ap: L(H) — L(H) : A pAp~ L.

4 N
Lemma 4. For each o € R\{0, 1}, the metric ¢\P2) is represented in the form

g P (X v) =T {X<m>y<6 }

f(Doz)
where
te — 1
PP = (0 = 1) ©
Il —ta
with the convention that f'P)(1) = limy_,, f<Da>(t) = 1.
N J
Proof. Direct computation using methods of the Gateaux differentiation. L

Example 5. When a = %, the function f (D 1/2)(15) = % corresponds to the SLD metric, and when
a = —1, the function f (D —1>(t) = 12Tt corresponds to the real RLD metric. Further, the limiting
function f (D 1>(t) = lim,_1 | (D a>(t) = % gives the Bogoliubov metric: this is consistent to the fact
that D1(t) := lim,_,1 Dq(t) is the von Neumann relative entropy. It is well known that these three

functions are operator monotone. Note that the limiting function f (D iOO)(t) = limg—4o00 [ (D a)(t) —

ttlgglt =t/f (D 1>(t) is also operator monotone.

To prove Theorem 1, we must specify all the values of « that make the function (4) operator mono-
tone [9]. In what follows, we change the parameter o into § = L and denote the corresponding

function fPa)(¢) by fa(t), ie., )

-1t -1
fﬂ(t) T ﬁ -1 _

where 3 ¢ {0,1}. We extend this function to § = 0 and 1 by continuity, to obtain

. tlogt . t—1
t) =1 t) = t) =1 t) = :
fo(t) ﬂiﬂofﬁ() P fi(t) 51211](5() ozt
(Lemma 6. The function f3(t) is operator monotone if and only if —1 < 3 < 2. }

_ 5
f%+5 <t> ’

and then represent f3(t) for % < (8 < 2 as a composition of some known operator monotone functions
(See also [5]). The ‘only if” part is proved by showing that 12_th < f5(t) < % holds for t > 0 only
when —1 < 3 < 2. [ ]

Proof. The proof of ‘if” part is divided into two steps: we first observe the identity f1_ ()
2
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