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Abstract
Information geometrical dualistic structure (g(Dα),∇(Dα),∇(Dα)∗) induced from the sandwiched Rényi α-

divergence Dα(ρ∥σ) := 1
α(α−1) log Tr

(
σ

1−α
2α ρ σ

1−α
2α

)α

on the quantum state space S(H) is studied. It is shown

that the Riemannian metric g(Dα) is monotone if and only if α ∈ (−∞− 1]∪ [12,∞), and that the quantum statistical
manifold (S(H), g(Dα),∇(Dα),∇(Dα)∗) is dually flat if and only if α = 1.

Introduction
Let us consider a finite quantum state space

S(H) := {ρ ∈ L++(H) | Tr ρ = 1},

where H is a finite dimensional Hilbert space. For ρ, σ ∈ S(H) and α ∈ (0, 1) ∪ (1,∞), let

D̃α(ρ∥σ) :=
1

α − 1
log Tr

(
σ
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)α
(1)

with the convention that D̃α(ρ∥σ) = ∞ if α > 1 and ker σ ̸⊂ ker ρ. The quantity (1) is called the
quantum Rényi divergence [8] or the sandwiched Rényi relative entropy [11], and is extended to α = 1
by continuity, to obtain the Umegaki-von Neumann relative entropy:

D̃1(ρ||σ) = lim
α→1

D̃α(ρ||σ) = Tr {ρ(log ρ − log σ)} .

The quantity (1) has several desirable properties: amongst others, if α ≥ 1
2, it is monotone under

completely positive trace preserving maps [8, 11, 2, 4]. This property was successfully used in study-
ing the strong converse properties of the channel capacity [11, 7] and the quantum hypothesis testing
problem [6].

For α < 0, however, the quantity (1) does not seem to be a reasonable measure of information [10],
because it takes negative values. We therefore introduce the following “rescaled” version

Dα(ρ∥σ) :=
1

α(α − 1)
log Tr

(
σ

1−α
2α ρ σ

1−α
2α

)α
, (2)

for α ∈ R\{0, 1}, which shall be referred to as the sandwiched Rényi α-divergence. As a matter of
fact, the factor 1

α is introduced not only to make Dα(ρ∥σ) positive for all α, but also to establish a
correspondence to the classical information geometry [1]. Note that (2) is continuously extended to
α = 1, but cannot be extended to α = 0 because limα→0 Dα(ρ∥σ) does not always exist.

The objective of the present study is to investigate the information geometrical structure induced
from (2) on the quantum state space S(H).

Main Results
For each α ∈ R\{0}, the quantity (2) enjoys the property:

Dα(ρ∥σ) ≥ 0 (∀ρ, σ ∈ S), and Dα(ρ∥σ) = 0 if ρ = σ.

This fact allows us to introduce, using Eguchi’s method [3], a Riemannian metric:

g
(Dα)
ρ (X,Y ) :=Dα((XY )ρ∥σ)

∣∣∣
σ=ρ

,

and a pair of affine connections:

g
(Dα)
ρ (∇(Dα)

X Y, Z) :=− Dα((XY )ρ∥(Z)σ)
∣∣∣
σ=ρ

, g
(Dα)
ρ (∇(Dα)∗

X Y, Z) :=− Dα((Z)ρ∥(XY )σ)
∣∣∣
σ=ρ

.

A Riemannian metric g on a quantum state space S(H) is called a monotone metric [9] if

gρ(X,Y ) ≥ gγ(ρ)(γ∗X, γ∗Y ) (3)

holds for all completely positive trace preserving maps γ : L(H) → L(H′) and all vector fields
X,Y ∈ TS(H). It is commonly believed that any physical process is represented by a trace preserv-
ing completely positive map. Therefore the monotonicity (3), which implies that the infinitesimal
distance between two nearby states always shrinks by a physical process γ, is a natural requirement
for a physical information processing. In this sense, characterizing the monotone metric is of funda-
mental importance in quantum information theory.

The main result of the present study is the following.
¶ ³
Theorem 1. The induced Riemannian metric g(Dα) is monotone under completely positive trace
preserving maps if and only if α ∈ (−∞,−1] ∪ [12,∞).µ ´
As a by-product, we arrive at the following corollary, the latter part of which was first observed by

numerical evaluation [8].
¶ ³
Corollary 2. The sandwiched Rényi α-divergence Dα(ρ||σ) is not monotone under completely pos-
itive trace preserving maps if α ∈ (−1, 0) ∪ (0, 1

2). Consequently, the original sandwiched Rényi
relative entropy D̃α(ρ||σ) is not monotone if α ∈ (0, 1

2).µ ´
We also studied the dualistic structure (g(Dα),∇(Dα),∇(Dα)∗) on the quantum state space S(H), and

obtained the following.
¶ ³
Theorem 3. The quantum statistical manifold (S(H), g(Dα),∇(Dα),∇(Dα)∗) is dually flat if and
only if α = 1.µ ´

Sketch of Proof of Theorem 1
Let X(m) be the m-representation of a tangent vector X ∈ TρS defined by X(m) := Xρ, and let X

(e)
f

be the e-representation of X defined by

X
(e)
f := f (∆ρ)

−1
{

(Xρ)ρ−1
}

,

where f : R++ → R++ is a symmetric monotone function satisfying f (1) = 1, and ∆ρ is the modular
operator associated with ρ ∈ S(H) defined by

∆ρ : L(H) → L(H) : A 7→ ρAρ−1.

¶ ³
Lemma 4. For each α ∈ R\{0, 1}, the metric g(Dα) is represented in the form

g
(Dα)
ρ (X,Y ) = Tr

{
X(m)Y

(e)

f (Dα)

}
where

f (Dα)(t) := (α − 1)
t

1
α − 1

1 − t
1−α
α

(4)

with the convention that f (Dα)(1) := limt→1 f (Dα)(t) = 1.µ ´
Proof. Direct computation using methods of the Gâteaux differentiation.

Example 5. When α = 1
2, the function f (D1/2)(t) = 1+t

2 corresponds to the SLD metric, and when
α = −1, the function f (D−1)(t) = 2t

1+t corresponds to the real RLD metric. Further, the limiting
function f (D1)(t) := limα→1 f (Dα)(t) = t−1

log t gives the Bogoliubov metric: this is consistent to the fact
that D1(t) := limα→1 Dα(t) is the von Neumann relative entropy. It is well known that these three
functions are operator monotone. Note that the limiting function f (D±∞)(t) := limα→±∞ f (Dα)(t) =
tlogt
t−1 = t/f (D1)(t) is also operator monotone.

To prove Theorem 1, we must specify all the values of α that make the function (4) operator mono-
tone [9]. In what follows, we change the parameter α into β := 1

α, and denote the corresponding
function f (Dα)(t) by fβ(t), i.e.,

fβ(t) :=
β − 1

β

tβ − 1

tβ−1 − 1

where β /∈ {0, 1}. We extend this function to β = 0 and 1 by continuity, to obtain

f0(t) := lim
β→0

fβ(t) =
t log t

t − 1
, f1(t) := lim

β→1
fβ(t) =

t − 1

log t
.

¶ ³
Lemma 6. The function fβ(t) is operator monotone if and only if −1 ≤ β ≤ 2.µ ´

Proof. The proof of ‘if’ part is divided into two steps: we first observe the identity f1
2−δ(t) = t

f1
2+δ

(t)
,

and then represent fβ(t) for 1
2 ≤ β ≤ 2 as a composition of some known operator monotone functions

(See also [5]). The ‘only if’ part is proved by showing that 2t
1+t ≤ fβ(t) ≤ 1+t

2 holds for t > 0 only
when −1 ≤ β ≤ 2.
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