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Partial Information (PI) Decomposition

Consider three random variables (RVs) X1, X2 and Y taking val-
ues in finite alphabets X1, X2 and Y resp. The total mutual
information that a pair of predictor RVs (X1,X2) convey about a
target RV Y can have aspects of

• redundant information – conveyed identically by both X1 and
X2, denoted I∩({X1,X2};Y ),

• unique information – conveyed exclusively by either X1 or X2,
denoted resp., UI ({X1};Y ) and UI ({X2};Y ),

• synergistic information – conveyed jointly by X1 and X2 that is
not available from either alone, denoted SI ({X1X2};Y ).

The equations governing such a partial information (PI) decom-
position are:

I (X1X2;Y ) = I∩({X1,X2};Y )︸ ︷︷ ︸
redundant

+SI ({X1X2};Y )︸ ︷︷ ︸
synergistic

+ UI ({X1};Y )︸ ︷︷ ︸
unique (X1 wrt X2)

+ UI ({X2};Y )︸ ︷︷ ︸
unique (X2 wrt X1)

I (Xi ;Y ) = I∩({X1,X2};Y ) + UI ({Xi};Y ), i = 1,2 (1)

(a)Xor (b)And

Figure 1: PI-diagrams showing the decomposition of I (X1X2;Y ) for some
canonical examples. {1,2} denotes the redundant information I∩({X1,X2};Y );
{1} and {2} denote, resp. UI ({X1};Y ) and UI ({X2};Y ); {12} denotes
SI ({X1X2};Y ). X1 and X2 are binary, independent and uniformly distributed.
(a) Y = Xor(X1,X2) and the pmf pX1X2Y is such that p(000) = p(011) = p(101)

= p(110) = 1
4. The joint RV X1X2 fully specifies Y , i.e., I (X1X2;Y ) = 1 whereas

the singletons X1 and X2 specify nothing, i.e., I (Xi ;Y ) = 0, i = 1,2. Xor is an
instance of a purely synergistic mechanism.
(b) Y = And(X1,X2) and pX1X2Y is such that p(000) = p(010) = p(100) = p(111)

= 1
4. Note X1 ⊥ X2; however if either X1 = 0 or X2 = 0, then both X1 and X2

can exclude the possibility of Y = 1 with probability of agreement one;
I∩({X1,X2};Y ) ≥ 0 [2]-[6]. There is no unique information since the marginal
distributions of the pairs (X1,Y ) and (X2,Y ) are identical and X1 = X2 [4].

The problem:

•Define a measure of redundant information, I∩ that yields a
nonnegative decomposition of I (X1X2;Y ) per (1).

•Explore the relationship between redundant information and
the more familiar notions of common information due to Gács-
Körner and Wyner [8].

Earlier work: PI lattice [1]; Information-geometric approaches
[2],[3]; Operational interpretation of unique information [4]-[6];
Common information-based measures [7].

Desirable properties of I∩

(S) Weak symmetry: I∩({X1,X2};Y ) is invariant under reordering
of the Xi ’s.

(I) Self-redundancy: I∩({X1};Y ) = I (X1;Y ).

(M) Monotonicity: I∩({X1,X2};Y ) ≤ I∩({X1};Y ) with equality if
X1 ⊆ X2.

(LN) Local Nonnegativity: For a given measure I∩, the derived
partial information functions UI and SI are nonnegative.

Bounds on I∩

•Coinformation

ICo(X1;X2;Y ) ..= I (X1;X2)− I (X1;X2|Y )

= I∩({X1,X2};Y )− SI ({X1X2};Y )

• If X1 − X2 − Y , then I∩({X1,X2};Y ) = I (X1;Y )

• If X2 − X1 − Y , then I∩({X1,X2};Y ) = I (X2;Y )

• If X1−X2−Y and X2−X1−Y , then I∩({X1,X2} = I (X1X2;Y )

• If X1 ⊥ Y or X2 ⊥ Y , then I∩({X1,X2};Y ) = 0

• If X1 − Y − X2, then I∩({X1,X2};Y ) ≥ I (X1;X2)

• If X1 ⊥ X2 and X1 − Y − X2, then ICo(X1;X2;Y ) = 0

Common Information

Suppose X = (X ′,Q) and Y = (Y ′,Q) where X ′,Y ′,Q are independent. Intuitively, the common
RV of X and Y (denoted X ∧ Y ) is Q and a natural measure of common information (CI) of X
and Y is H(Q). Can extend this to arbitrary (X ,Y ) in a couple of ways [8], see Fig. 2(a):
• [Gács-Körner] Find the “largest” RV Q that is determined by X alone as well as by Y alone
(w.p. 1); exploit the combinatorial structure of the distribution pXY .

CGK(X ;Y ) ..= max
pQ|XY :

H(Q|X )=H(Q|Y )=0

H(Q) = max
pQ|XY :

Q−X−Y , Q−Y−X

I (XY ;Q), |Q| ≤ |X ||Y| + 2

• [Wyner] Find the “smallest” RV Q such that conditioned on Q there is no residual mutual
information.

CW (X ;Y ) ..= min
pQ|XY :

X−Q−Y

I (XY ;Q), |Q| ≤ |X ||Y| + 2

• CGK(X ;Y ) ≤ I (X ;Y ) ≤ CW (X ;Y ) with equality iff there exists a pmf pQ|XY such that the
Markov chains X − Q − Y , Q − X − Y , Q − Y − X hold [8].

Common Information-based Measures of I∩

Three candidate measures to assess how well the redundancy that X1 and X2 share about Y can
be captured by a RV:

I GK∩ ({X1,X2};Y ) ..= max
pQ|X1X2Y

:

H(Q|X1)=H(Q|X2)=0

I (Q;Y ) = I (X1 ∧ X2;Y ) (2)

IW∩ ({X1,X2};Y ) ..= min
pQ|X1X2Y

:
Xi−Q−Y , i=1,2

I (Q;Y ) (3)

I∩({X1,X2};Y ) ..= max
pQ|X1X2Y

:
Q−Xi−Y , i=1,2

I (Q;Y ) (4)

where |Q| ≤ |X1||X2||Y| + 2.

• I GK∩ : maximum mutual information I (Q : Y ) that some RV Q conveys about Y , subject to Q
being a function of each of the X ′i s, i = 1,2; I GK∩ violates (LN) since the supermodularity law
does not hold for the Gács-Körner CI in general [7].

• IW∩ : monotonically nondecreasing in the number of Xi ’s, i.e., IW∩ violates (M).

• I∩: if Q specifies the optimal redundant RV, then conditioning on any predictor Xi , i = 1,2,
should remove all the redundant information about Y [7]; I∩ violates (LN):

◦ If X1 ⊥ X2, then I∩({X1,X2};Y ) = 0; see Fig. 2(b).
◦ If X1− Y − X2, then I∩({X1,X2};Y ) ≤ I (X1;X2). The derived PI function SI ({X1X2};Y ) ≤ 0;

see Fig. 2(c).
◦ Let Y = X1 ×X2 and Y = X1X2. Then I∩({X1,X2};Y ) = CGK(X1;X2) ≤ I (X1;X2).

Figure 2: For finite RVs, there is a one-to-one correspondence between Shannon’s information measures (I -measure)
and a signed measure µ∗ over sets. (a) The generic I -diagram for RVs X ,Y , and Q. Given a RV X , we use X to also
label the corresponding set in the I -diagram. (b) Denote the I -Measure of RVs (Q,X1,X2,Y ) by µ∗. The atoms on
which µ∗ vanishes when the Markov chains Q − Xi − Y , i = 1,2 hold and X1 ⊥ X2 are marked by an asterisk;
µ∗(Q ∩ Y ) = 0. (c) The atoms on which µ∗ vanishes when the Markov chains Q − Xi − Y , i = 1,2 and X1 − Y − X2

hold are marked by an asterisk; µ∗(X1 ∩ X2 ∩ Y ) = µ∗(X1 ∩ X2) ≥ 0 and µ∗(Q ∩ Y ) ≤ µ∗(X1 ∩ X2). Note: The
I -diagrams in (b) and (c) are valid diagrams since the sets Q,X1,X2,Y intersect each other generically and the region
representing the set Q splits each atom into two smaller ones.

• Conclusion: For independent predictor RVs when any nonvanishing redundancy can be attributed
solely to a mechanistic dependence between the target and the predictors, common information-
based measures of redundant information cannot induce a nonnegative PI decomposition.
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