Information Decomposition Based On Common Information

Pradeep Kr. Banerjee (pradeep@mis.mpg.de)
Max Planck Institute for Mathematics in the Sciences, Inselstr. 22, Leipzig, Germany
MAX-PLANCK-GESELLSCHAFT

Partial Information (PI) Decomposition

Consider three random variables $\left(\mathrm{RV}\right.$ s) X_{1}, X_{2} and Y taking values in finite alphabets $\mathcal{X}_{1}, \mathcal{X}_{2}$ and \mathcal{Y} resp. The total mutual information that a pair of predictor $\mathrm{RVs}\left(X_{1}, X_{2}\right)$ convey about a target RV Y can have aspects of

- redundant information - conveyed identically by both X_{1} and X_{2}, denoted $I_{\cap}\left(\left\{X_{1}, X_{2}\right\} ; Y\right)$,
- unique information - conveyed exclusively by either X_{1} or X_{2}, denoted resp., $U I\left(\left\{X_{1}\right\} ; Y\right)$ and $U I\left(\left\{X_{2}\right\} ; Y\right)$,
- synergistic information - conveyed jointly by X_{1} and X_{2} that is not available from either alone, denoted $S I\left(\left\{X_{1} X_{2}\right\} ; Y\right)$.
The equations governing such a partial information (PI) decomposition are

$$
\begin{align*}
I\left(X_{1} X_{2} ; Y\right) & =\underbrace{\operatorname{In}\left(\left\{X_{1}, X_{2}\right\} ; Y\right)}_{\text {redundant }}+\underbrace{S I\left(\left\{X_{1} X_{2}\right\} ; Y\right)}_{\text {synergistic }} \\
& +\underbrace{U I\left(\left\{X_{1}\right\} Y\right)}_{\text {unique }\left(X_{1} \text { wrt } X_{2}\right)}+\underbrace{U I\left(\left\{X_{2} ; Y\right)\right.}_{\text {unique }\left(X_{2} \text { wrt } X_{1}\right)} \\
I\left(X_{i} ; Y\right) & =I_{\cap}\left(\left\{X_{1}, X_{2}\right\} ; Y\right)+U I\left(\left\{X_{i}\right\} ; Y\right), i=1,2 \tag{1}
\end{align*}
$$

(a) Xor

(b) AND

Figure 1: PI-diagrams showing the decomposition of $I\left(X_{1} X_{2} ; Y\right)$ for some canonical examples. $\{1,2\}$ denotes the redundant information $I^{\prime}\left(\left\{X_{1}, X_{2}\right\} ; Y\right)$; $\{1\}$ and $\{2\}$ denote, resp. $U I\left(\left\{X_{1}\right\} ; Y\right)$ and $U I\left(\left\{X_{2}\right\} ; Y\right) ;\{12\}$ denotes $S /\left(\left\{X_{1} X_{2}\right\} ; Y\right) . X_{1}$ and X_{2} are binary, independent and uniformly distributed. (a) $Y=\operatorname{XOR}\left(X_{1}, X_{2}\right)$ and the pmf $p_{X_{1} X_{2} Y}$ is such that $p_{(000)}=p_{(011)}=p_{(101)}$ $=p_{(110)}=\frac{1}{4}$. The joint RV $X_{1} X_{2}$ fully specifies Y, i.e., $I\left(X_{1} X_{2} ; Y\right)=1$ whereas the singletons X_{1} and X_{2} specify nothing, i.e., $I\left(X_{i} ; Y\right)=0, i=1,2$. Xor is an instance of a purely synergistic mechanism.
(b) $Y=\operatorname{AND}\left(X_{1}, X_{2}\right)$ and $p_{X_{1} X_{2} Y}$ is such that $p_{(000)}=p_{(010)}=p_{(100)}=p_{(111)}$ $=\frac{1}{4}$. Note $X_{1} \perp X_{2}$; however if either $X_{1}=0$ or $X_{2}=0$, then both X_{1} and X_{2} can exclude the possibility of $Y=1$ with probability of agreement one;
$I_{n}\left(\left\{X_{1}, X_{2}\right\} ; Y\right) \geq 0[2]-[6]$. There is no unique information since the marginal distributions of the pairs $\left(X_{1}, Y\right)$ and $\left(X_{2}, Y\right)$ are identical and $\mathcal{X}_{1}=\mathcal{X}_{2}[4]$.

The problem:

- Define a measure of redundant information, I_{\cap} that yields a nonnegative decomposition of $I\left(X_{1} X_{2} ; Y\right)$ per (1).
- Explore the relationship between redundant information and the more familiar notions of common information due to Gács Körner and Wyner [8].
Earlier work: PI lattice [1]; Information-geometric approaches [2],[3]; Operational interpretation of unique information [4]-[6]; Common information-based measures [7].

Desirable properties of I

(S) Weak symmetry: $I_{\cap}\left(\left\{X_{1}, X_{2}\right\} ; Y\right)$ is invariant under reordering of the X_{i} 's.
(I) Self-redundancy: $I_{\cap}\left(\left\{X_{1}\right\} ; Y\right)=I\left(X_{1} ; Y\right)$.
(M) Monotonicity: $I_{\cap}\left(\left\{X_{1}, X_{2}\right\} ; Y\right) \leq I_{\cap}\left(\left\{X_{1}\right\} ; Y\right)$ with equality if $X_{1} \subseteq X_{2}$.
(LN) Local Nonnegativity: For a given measure I_{\cap}, the derived partial information functions $U I$ and $S I$ are nonnegative.

Bounds on I

- Coinformation

$$
\begin{aligned}
I_{C_{o}}\left(X_{1} ; X_{2} ; Y\right) & =I\left(X_{1} ; X_{2}\right)-I\left(X_{1} ; X_{2} \mid Y\right) \\
& =I \cap\left(\left\{X_{1}, X_{2}\right\} ; Y\right)-S I\left(\left\{X_{1} X_{2}\right\} ; Y\right)
\end{aligned}
$$

- If $X_{1}-X_{2}-Y$, then $I \cap\left(\left\{X_{1}, X_{2}\right\} ; Y\right)=I\left(X_{1} ; Y\right)$
- If $X_{2}-X_{1}-Y$, then $\operatorname{In}\left(\left\{X_{1}, X_{2}\right\} ; Y\right)=I\left(X_{2} ; Y\right)$
- If $X_{1}-X_{2}-Y$ and $X_{2}-X_{1}-Y$, then $I_{\cap}\left(\left\{X_{1}, X_{2}\right\}=I\left(X_{1} X_{2} ; Y\right)\right.$
- If $X_{1} \perp Y$ or $X_{2} \perp Y$, then $\operatorname{I}\left(\left\{X_{1}, X_{2}\right\} ; Y\right)=0$
- If $X_{1}-Y-X_{2}$, then $\operatorname{I}\left(\left\{X_{1}, X_{2}\right\} ; Y\right) \geq I\left(X_{1} ; X_{2}\right)$
- If $X_{1} \perp X_{2}$ and $X_{1}-Y-X_{2}$, then $I_{C_{0}}\left(X_{1} ; X_{2} ; Y\right)=0$

Common Information

Suppose $X=\left(X^{\prime}, Q\right)$ and $Y=\left(Y^{\prime}, Q\right)$ where $X^{\prime}, Y^{\prime}, Q$ are independent. Intuitively, the common $R V$ of X and Y (denoted $X \wedge Y$) is Q and a natural measure of common information (Cl) of X and Y is $H(Q)$. Can extend this to arbitrary (X, Y) in a couple of ways [8], see Fig. 2(a):

- [Gács-Körner] Find the "largest" RV Q that is determined by X alone as well as by Y alone (w.p. 1); exploit the combinatorial structure of the distribution $p_{X Y}$.

$$
C_{G K}(X ; Y):=\max _{\substack{P_{Q \mid X Y:} \\ H(Q \mid X)=H(Q \mid Y)=0}} H(Q)=\max _{\substack{P_{Q \mid X Y:}: Y-X \\ Q-X-Y, Q-Y-X}} I(X Y ; Q),|\mathcal{Q}| \leq|\mathcal{X}||\mathcal{Y}|+2
$$

- [Wyner] Find the "smallest" RV Q such that conditioned on Q there is no residual mutual information.

$$
C_{W}(X ; Y):=\min _{\substack{P_{Q} \mid X Y \\ X-Q-Y}} I(X Y ; Q),|\mathcal{Q}| \leq|\mathcal{X}||\mathcal{Y}|+2
$$

- $C_{G K}(X ; Y) \leq I(X ; Y) \leq C_{W}(X ; Y)$ with equality iff there exists a pmf $p_{Q \mid X Y}$ such that the Markov chains $X-Q-Y, Q-X-Y, Q-Y-X$ hold [8].

Common Information-based Measures of I_{\cap}

Three candidate measures to assess how well the redundancy that X_{1} and X_{2} share about Y can be captured by a RV:

$$
\begin{align*}
I_{\cap}^{G K}\left(\left\{X_{1}, X_{2}\right\} ; Y\right) & :=\max _{\substack{P_{Q \mid X_{1} X_{2},} Y: \\
H\left(Q \mid X_{1}\right)=H\left(Q \mid X_{2}\right)=0}} I(Q ; Y)=I\left(X_{1} \wedge X_{2} ; Y\right) \\
I_{\cap}^{W}\left(\left\{X_{1}, X_{2}\right\} ; Y\right): & \min _{\substack{P_{Q \mid X_{1} X_{2} Y:} Y_{i=1,2}}} I(Q ; Y) \\
I_{\cap}\left(\left\{X_{1}, X_{2}\right\} ; Y\right): & =\max _{\substack{X_{Q}-Q X_{1} X_{1} Y: \\
Q-X_{i}-Y, i=1,2}} I(Q ; Y) \tag{3}
\end{align*}
$$

where $|\mathcal{Q}| \leq\left|\mathcal{X}_{1}\right|\left|\mathcal{X}_{2}\right||\mathcal{Y}|+2$.

- $I_{\cap}^{G K}$: maximum mutual information $I(Q: Y)$ that some $\mathrm{RV} Q$ conveys about Y, subject to Q being a function of each of the $X_{i}^{\prime} \mathrm{s}, i=1,2 ; I_{\cap}^{G K}$ violates (LN) since the supermodularity law does not hold for the Gács-Körner Cl in general [7]
- $I_{\cap}^{W}:$ monotonically nondecreasing in the number of X_{i}^{\prime} s, i.e., I_{\cap}^{W} violates (M).
- I_{\cap} : if Q specifies the optimal redundant RV , then conditioning on any predictor $X_{i}, i=1,2$, should remove all the redundant information about $Y[7] ; I_{\cap}$ violates (LN):
- If $X_{1} \perp X_{2}$, then $I_{\cap}\left(\left\{X_{1}, X_{2}\right\} ; Y\right)=0$; see Fig. 2(b).
- If $X_{1}-Y-X_{2}$, then $\operatorname{I}\left(\left\{X_{1}, X_{2}\right\} ; Y\right) \leq I\left(X_{1} ; X_{2}\right)$. The derived PI function $S I\left(\left\{X_{1} X_{2}\right\} ; Y\right) \leq 0$; see Fig. 2(c).
- Let $\mathcal{Y}=\mathcal{X}_{1} \times \mathcal{X}_{2}$ and $Y=X_{1} X_{2}$. Then $I_{\cap}\left(\left\{X_{1}, X_{2}\right\} ; Y\right)=C_{G K}\left(X_{1} ; X_{2}\right) \leq I\left(X_{1} ; X_{2}\right)$.

(a)

(b)

(c)

Figure 2: For finite RVs , there is a one-to-one correspondence between Shannon's information measures (I-measure) and a signed measure μ^{*} over sets. (a) The generic I-diagram for RV s X, Y, and Q. Given a RV X, we use X to also label the corresponding set in the I-diagram. (b) Denote the I-Measure of $\mathrm{RV} \operatorname{s}\left(Q, X_{1}, X_{2}, Y\right)$ by μ^{*}. The atoms on which μ^{*} vanishes when the Markov chains $Q-X_{i}-Y, i=1,2$ hold and $X_{1} \perp X_{2}$ are marked by an asterisk; $\mu^{*}(Q \cap Y)=0$. (c) The atoms on which μ^{*} vanishes when the Markov chains $Q-X_{i}-Y, i=1,2$ and $X_{1}-Y-X_{2}$ hold are marked by an asterisk; $\mu^{*}\left(X_{1} \cap X_{2} \cap Y\right)=\mu^{*}\left(X_{1} \cap X_{2}\right) \geq 0$ and $\mu^{*}(Q \cap Y) \leq \mu^{*}\left(X_{1} \cap X_{2}\right)$. Note: The I-diagrams in (b) and (c) are valid diagrams since the sets Q, X_{1}, X_{2}, Y intersect each other generically and the region representing the set Q splits each atom into two smaller ones.

- Conclusion: For independent predictor RVs when any nonvanishing redundancy can be attributed solely to a mechanistic dependence between the target and the predictors, common informationbased measures of redundant information cannot induce a nonnegative PI decomposition.

References

[1] P. L. Williams and R. D. Beer (2010), Nonnegative decomposition of multivariate information, arXiv:1004.2515.
[2] M. Harder, C. Salge, and D. Polani, "Bivariate measure of redundant information," Physical Review E, vol. 87, no. 1, p. 012130, 2013.
3] N. Bertschinger, J. Rauh, E. Olbrich, and J. Jost, "Shared information-New insights and problems in decomposing information in complex systems," in Proc. European Conf. on Complex Systems 2012 (ECCS'12), 2012, pp. 251-269.
[4] N. Bertschinger, J. Rauh, E. Olbrich, J. Jost, and N. Ay, "Quantifying unique information," Entropy, vol. 16, no. 4, pp. 2161-2183, 2014.
[5] J. Rauh, N. Bertschinger, E. Olbrich, and J. Jost, "Reconsidering unique information: Towards a multivariate information decomposition," in Proc. IEEE Int. Symp. Inf. Theory (ISIT 2014), 2014, pp. 2232-2236.
[6] V. Griffith and C. Koch, "Quantifying synergistic mutual information," in Guided Self-Organization: Inception, Springer, 2014, vol. 9, Emergence, Complexity and Computation Series, pp. 159-190.
[7] V. Griffith, T. Ho (2015), Quantifying redundant information in predicting a target random variable, Entropy, vol. 17, no. 7, pp. 4644-4653.
[8] R. Ahlswede and J. Körner (1974), "On common information and related characteristics of correlated information sources," in 7th Prague Conference on Information Theory.

