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Basic Notations in Quantum Mechanics

State space: the set of n x n positive definite trace one matrices (/\/l}l).
Observables: n x n self adjoint matrices (M, ga).

For given state D € M. and observables A, B € M ga

expectation value: Tr (D A);
normalization of A: A = A — Tr(DA)I; (Tr(DAy) =0)
variance: Varp(A) = Tr (DAQ) — (Tr (DA))%;

1
covariance: Cov (A, B) = 5(Tr(DAB) + Tr(DBA)) _ Tr(DA) Te(DB).

Uncertainty Relations in Early Years

1927, Heisenberg: Defined the uncertainty of a Gaussian distribution [ as its width D . The width
of the Fourier transformation of f is denoted by D F(f): The first formalization of the uncertainty
principle was D ¢[) F(f) = constant.

1927, Kennard: Observables A, B with [A, B] = —i: Varp(A) Varp(B) >

H~ | —

1
1929, Robertson: For every observables A, B and state D: Varp(A) Varp(B) > Z‘ Tr(D[A, B))|.

1
1930, Scrodinger: Varp(A) Varp(B) — Covp(A, B)? > i 'Te(D [A, B))|*.

1934, Robertson: For every set of observables (A4;);  n

geeesy

det ([COVD(Ah, A])} =1 N) > det <[—l TI‘(D [Aha A]} )] > :
L 2 h,j=1,...N

(For N = 2 gives the Scrodinger uncertainty relation.)

Quantum Fisher Information

Fop: set of operator monotone functions f : R™ — R with properties f(x) = xf(z~ ') and f(1) = 1.

2
, 2 1+« 1+ +x r— 1
Examples in Fop: fuun(r) = o fsin(a) = ", fe(z) = ( f) i) =T

Regular and non-regular elements: 7o, = { f € Fop|f(0) # 0} and Fy, = { f € Fop|f(0) = 0}.

Theorem [Gibilisco, Hansen, Isola]. The map

~

fro fla) =5 (4 a) = (1= 0P ED

For every f € Fop introduce the notation m ¢ : R™ x RT™ — R*, my = yf <§>
Yy

(The reciprocal of m ¢ 1s the Chentsov—Morozova function.)

Theorem [Petz]. In quantum setting there is a bijective correspondence between Fisher informations
and functions in f € Fop. For every | € Fop the Fisher information is given by

(A, B)p,; =Tt (Amy (Lp, Rp) ™ (B)). (1)

where Lp(X) = DX, Rp(X) = XD.

—> For every f € Fop (M, (-, ). f) 1s a Riemannian manifold.

)

Covariances

For two observables A, B € M), s, state D € /\/1712 and function [ € F,, we define

covariance: i
Covp(A, B) = §(Tr(DAB) + Tr(DBA)) — Tr(DA) Tr(DB);

quantum f-covariance: [introduced by Petz]

—1
Covly(A, B) = Tr (Af(Ly,pB, ) Rn.p(B))
antisymmetric f-covariance:

aCovs (4. 8) =L (D, ALi (D Bl

symmetric f-covariance:

qCOV%,f(Av B) — @<{D7A}7{D7B}>D7fa

where |., .| is the commutator of matrices and {., .} denotes the anticommutator respectively.

For a fixed density matrix D € M}, function f € Jop and an N-tuple of nonzero matrices

(A(k>) k=1...N € Mpsa we define the following NV X N matrices Cov p, Cové, qCovy f and qCovp, f

with entries

[COVD]Z-]- — COVD<A(<)i>, A(gj)) {Cova: y = Cové(AgD, Aé‘”)
[qCOV%S’ f} o qCovpy f(Ago, Aéj )) {qCOVSD7 7l = qCovp. f(Agw, A(()j >).

tJ

Mathematical Toolbox

Petz’s scalar produc (1) can be extended: Define

Do = {g R x RT — BT ‘ g 1s a symmetric smooth function, with analytical } |

extension defined on a neighborhood of R™ x R™

Fix a function g € C 4. Define for every D € M, and for every A, B € My, ¢,

(4, B)D,g = Ir (Ag(Ln,Da Rn,D)<B)) :

—> For every g € Cpq (M, (-, ). ,) is a Riemannian manifold.

g
1

f (5)

VD € My, VA, B € Mp sa.

, then we have

Connection to Petz’s scalar product: For f € F, define g(z,y) =

<A7 B>D,f — (Av B)D,g

Theorem [Andai, Lovas]. Consider a density matrix D € /\/1711, an N-tuple of observables
(A<k>)k:17ij and functions g1, go € Crq such that

gi(x,y) > go(x,y)  Va,y € RT.

Define the N x N matrices Covp , and Covp ., with entries [QOUDL%} = (Aéi>,Aéj)

(k=1,2). Then

i )D.gi

det(Covp ) > det(Q:OUD,m) T det(Q:OUD,gl - Q:OUD,92>

g1
holds.

Uncertainty Relations Nowadays

Gibilisco and Isola in 2006 conjectured the inequality det(Covp) > det(qCOVClei f).

Which was based on numerous partial results for very specific f functions for few (generally 2) observables and the inequalities were expressed in different form. The conjecture was proved by Andai and Gibilisco,

Imparato and Isola in 2008.

We have found a more accurate inequality:

Theorem [Lovas, Andai]. For any operator monotone function | € Fqp at every state D € /\/1711 for every N-tuple of observables (A<k>) k—1,... N we have for the covariance matrices

det(Covp) > det(qCovi ;) > det(qCovyy ¢).

We have an estimation for the gap between the symmetric and antisymmetric covariance:

Theorem [Lovas, Andai]. Using the same notation as in the previous Theorem we have

det(qCov ;) — det(qCovis ;) > (2£(0))" det(Coviy?),

where frip(x) = ﬁr—xx

: . : l 1+
Moreover we have shown that the symmetric covariance generated by the function f¢(z) = - ( +

2 2

Theorem [Lovas, Andai]. For every function g € Fop, the inequality

1+

) 1s universal in the following sense:

det(quv%) fopt) > det(qCOVCJL)S,g)

holds and [yt gives the best upper bound in Fp,.



