
On Robertson-type uncertainty principles
Attila Andai and Attila Lovas
Budapest University of Technology and Economics
andaia@math.bme.hu, lovas@math.bme.hu

Basic Notations in Quantum Mechanics

State space: the set of n× n positive definite trace one matrices (M1
n).

Observables: n× n self adjoint matrices (Mn,sa).

For given state D ∈M1
n and observables A,B ∈Mn,sa

expectation value: Tr (DA);
normalization of A: A0 = A− Tr(DA)I; (Tr(DA0) = 0)
variance: VarD(A) = Tr

(
DA2

)
− (Tr (DA))2;

covariance: CovD(A,B) =
1

2

(
Tr(DAB) + Tr(DBA)

)
− Tr(DA) Tr(DB).

Uncertainty Relations in Early Years

1927, Heisenberg: Defined the uncertainty of a Gaussian distribution f as its width Df . The width
of the Fourier transformation of f is denoted by DF(f ). The first formalization of the uncertainty
principle was DfDF(f ) = constant.

1927, Kennard: Observables A,B with [A,B] = − i: VarD(A) VarD(B) ≥ 1

4
.

1929, Robertson: For every observables A,B and state D: VarD(A) VarD(B) ≥ 1

4
|Tr(D [A,B])|2.

1930, Scrödinger: VarD(A) VarD(B)− CovD(A,B)2 ≥ 1

4
|Tr(D [A,B])|2.

1934, Robertson: For every set of observables (Ai)1,...,N

det

([
CovD(Ah, Aj)

]
h,j=1,...,N

)
≥ det

([
− i

2
Tr(D

[
Ah, Aj

]
)

]
h,j=1,...,N

)
.

(For N = 2 gives the Scrödinger uncertainty relation.)

Quantum Fisher Information

Fop: set of operator monotone functions f : R+→ R with properties f (x) = xf (x−1) and f (1) = 1.

Examples in Fop: fRLD(x) =
2x

1 + x
, fSLD(x) =

1 + x

2
, fWY(x) =

(
1 +
√
x

2

)2

, fKM(x) =
x− 1

log x
.

Regular and non-regular elements: F r
op =

{
f ∈ Fop|f (0) 6= 0

}
and Fn

op =
{
f ∈ Fop|f (0) = 0

}
.

Theorem [Gibilisco, Hansen, Isola]. The map

F r
op→ Fn

op f 7→ f̃ (x) =
1

2

[
(1 + x)− (1− x)2

f (0)

f (x)

]
is a bijection.

For every f ∈ Fop introduce the notation mf : R+ × R+→ R+, mf = yf

(
x

y

)
.

(The reciprocal of mf is the Chentsov–Morozova function.)

Theorem [Petz]. In quantum setting there is a bijective correspondence between Fisher informations
and functions in f ∈ Fop. For every f ∈ Fop the Fisher information is given by

〈A,B〉D,f = Tr
(
Amf (LD, RD)

−1 (B)
)
, (1)

where LD(X) = DX , RD(X) = XD.

=⇒ For every f ∈ Fop (Mn, 〈·, ·〉·,f ) is a Riemannian manifold.

Covariances

For two observables A,B ∈Mn,sa, state D ∈M1
n and function f ∈ Fop we define

covariance:
CovD(A,B) =

1

2
(Tr(DAB) + Tr(DBA))− Tr(DA) Tr(DB);

quantum f -covariance: [introduced by Petz]

Cov
f
D(A,B) = Tr

(
Af (Ln,DR

−1
n,D)Rn,D(B)

)
;

antisymmetric f -covariance:

qCovasD,f (A,B) =
f (0)

2
〈i [D,A] , i [D,B]〉D,f ;

symmetric f -covariance:

qCovsD,f (A,B) =
f (0)

2
〈{D,A} , {D,B}〉D,f ,

where [., .] is the commutator of matrices and {., .} denotes the anticommutator respectively.

For a fixed density matrix D ∈ M1
n, function f ∈ Fop and an N -tuple of nonzero matrices

(A(k))k=1,...,N ∈Mn,sa we define the following N×N matrices CovD, CovfD, qCovasD,f and qCovsD,f
with entries

[CovD]ij = CovD(A
(i)
0 , A

(j)
0 )

[
Cov

f
D

]
ij
= Cov

f
D(A

(i)
0 , A

(j)
0 )[

qCovasD,f

]
ij
= qCovasD,f (A

(i)
0 , A

(j)
0 )

[
qCovsD,f

]
ij
= qCovsD,f (A

(i)
0 , A

(j)
0 ).

Mathematical Toolbox

Petz’s scalar produc (1) can be extended: Define

CM =

{
g : R+ × R+→ R+

∣∣∣ g is a symmetric smooth function, with analytical
extension defined on a neighborhood of R+ × R+

}
.

Fix a function g ∈ CM. Define for every D ∈Mn and for every A,B ∈Mn,sa

(A,B)D,g = Tr
(
Ag(Ln,D, Rn,D)(B)

)
.

=⇒ For every g ∈ CM (Mn, (·, ·)·,g) is a Riemannian manifold.

Connection to Petz’s scalar product: For f ∈ Fop define g(x, y) =
1

yf
(
x
y

), then we have

〈A,B〉D,f = (A,B)D,g ∀D ∈Mn, ∀A,B ∈Mn,sa.

Theorem [Andai, Lovas]. Consider a density matrix D ∈ M1
n, an N -tuple of observables

(A(k))k=1,...,N and functions g1, g2 ∈ CM such that

g1(x, y) ≥ g2(x, y) ∀x, y ∈ R+.

Define the N × N matrices CovD,g1 and CovD,g2 with entries
[
CovD,gk

]
ij

= (A
(i)
0 , A

(j)
0 )D,gk

(k = 1, 2). Then
det(CovD,g1) ≥ det(CovD,g2) + det(CovD,g1−CovD,g2)

holds.

Uncertainty Relations Nowadays

Gibilisco and Isola in 2006 conjectured the inequality det(CovD) ≥ det(qCovasD,f).

Which was based on numerous partial results for very specific f functions for few (generally 2) observables and the inequalities were expressed in different form. The conjecture was proved by Andai and Gibilisco,
Imparato and Isola in 2008.

We have found a more accurate inequality:
Theorem [Lovas, Andai]. For any operator monotone function f ∈ Fop at every state D ∈M1

n for every N -tuple of observables (A(k))k=1,...,N we have for the covariance matrices

det(CovD) ≥ det(qCovsD,f) ≥ det(qCovasD,f).

We have an estimation for the gap between the symmetric and antisymmetric covariance:

Theorem [Lovas, Andai]. Using the same notation as in the previous Theorem we have

det(qCovsD,f)− det(qCovasD,f) ≥ (2f (0))N det(CovfRLD

D ),

where fRLD(x) =
2x
1+x.

Moreover we have shown that the symmetric covariance generated by the function fopt(x) =
1

2

(
1 + x

2
+

2x

1 + x

)
is universal in the following sense:

Theorem [Lovas, Andai]. For every function g ∈ Fop the inequality
det(qCovsD,fopt

) ≥ det(qCovasD,g)

holds and fopt gives the best upper bound in Fop.


