On Robertson-type uncertainty principles

Attila Andai and Attila Lovas

Budapest University of Technology and Economics

andaia@math.bme.hu, lovas@math.bme.hu

Basic Notations in Quantum Mechanics

State space: the set of $n \times n$ positive definite trace one matrices (\mathcal{M}_n^{\perp}) .

Observables: $n \times n$ self adjoint matrices $(M_{n,sa})$.

For given state $D \in \mathcal{M}_n^1$ and observables $A, B \in M_{n,sa}$

expectation value: Tr(DA);

normalization of A: $A_0 = A - \text{Tr}(DA)I$; $(\text{Tr}(DA_0) = 0)$

variance: $Var_D(A) = Tr(DA^2) - (Tr(DA))^2$;

covariance: $Cov_D(A, B) = \frac{1}{2} \Big(Tr(DAB) + Tr(DBA) \Big) - Tr(DA) Tr(DB).$

Uncertainty Relations in Early Years

1927, Heisenberg: Defined the uncertainty of a Gaussian distribution f as its width D_f . The width of the Fourier transformation of f is denoted by $D_{\mathcal{F}(f)}$. The first formalization of the uncertainty principle was $D_f D_{\mathcal{F}(f)} = \text{constant}$.

1927, Kennard: Observables A, B with [A, B] = -i: $Var_D(A) Var_D(B) \ge \frac{1}{4}$.

1929, Robertson: For every observables A, B and state D: $Var_D(A) Var_D(B) \ge \frac{1}{4} |\operatorname{Tr}(D[A, B])|^2$.

1930, Scrödinger: $Var_D(A) Var_D(B) - Cov_D(A, B)^2 \ge \frac{1}{4} |Tr(D[A, B])|^2$.

1934, Robertson: For every set of observables $(A_i)_{1,\ldots,N}$

$$\det\left(\left[\operatorname{Cov}_D(A_h,A_j)\right]_{h,j=1,...,N}\right) \geq \det\left(\left[-\frac{\mathrm{i}}{2}\operatorname{Tr}(D\left[A_h,A_j\right])\right]_{h,j=1,...,N}\right).$$

(For N=2 gives the Scrödinger uncertainty relation.)

Quantum Fisher Information

 \mathcal{F}_{op} : set of operator monotone functions $f: \mathbb{R}^+ \to \mathbb{R}$ with properties $f(x) = xf(x^{-1})$ and f(1) = 1.

Examples in
$$\mathcal{F}_{op}$$
: $f_{RLD}(x) = \frac{2x}{1+x}$, $f_{SLD}(x) = \frac{1+x}{2}$, $f_{WY}(x) = \left(\frac{1+\sqrt{x}}{2}\right)^2$, $f_{KM}(x) = \frac{x-1}{\log x}$.

Regular and non-regular elements: $\mathcal{F}_{op}^{r} = \{ f \in \mathcal{F}_{op} | f(0) \neq 0 \}$ and $\mathcal{F}_{op}^{n} = \{ f \in \mathcal{F}_{op} | f(0) = 0 \}$.

Theorem [Gibilisco, Hansen, Isola]. The map

$$\mathcal{F}_{\text{op}}^{\text{r}} \to \mathcal{F}_{\text{op}}^{\text{n}}$$
 $f \mapsto \tilde{f}(x) = \frac{1}{2} \left[(1+x) - (1-x)^2 \frac{f(0)}{f(x)} \right]$

is a bijection.

For every $f \in \mathcal{F}_{op}$ introduce the notation $m_f : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+$, $m_f = yf\left(\frac{x}{y}\right)$.

(The reciprocal of m_f is the Chentsov–Morozova function.)

Theorem [Petz]. In quantum setting there is a bijective correspondence between Fisher informations and functions in $f \in \mathcal{F}_{op}$. For every $f \in \mathcal{F}_{op}$ the Fisher information is given by

$$\langle A, B \rangle_{D,f} = \text{Tr}\left(Am_f (L_D, R_D)^{-1}(B)\right),$$
 (1)

where $L_D(X) = DX$, $R_D(X) = XD$.

 \Longrightarrow For every $f \in \mathcal{F}_{op}(\mathcal{M}_n, \langle \cdot, \cdot \rangle_{\cdot, f})$ is a Riemannian manifold.

Covariances

For two observables $A, B \in M_{n,sa}$, state $D \in \mathcal{M}_n^1$ and function $f \in \mathcal{F}_{op}$ we define covariance:

 $Cov_D(A, B) = \frac{1}{2} (Tr(DAB) + Tr(DBA)) - Tr(DA) Tr(DB);$

quantum *f***-covariance**: [introduced by Petz]

$$Cov_D^f(A, B) = Tr\left(Af(L_{n,D}R_{n,D}^{-1})R_{n,D}(B)\right);$$

antisymmetric f-covariance:

$$\operatorname{qCov}_{D,f}^{as}(A,B) = \frac{f(0)}{2} \left\langle \operatorname{i}\left[D,A\right], \operatorname{i}\left[D,B\right] \right\rangle_{D,f};$$

symmetric *f*-covariance:

$$\operatorname{qCov}_{D,f}^s(A,B) = \frac{f(0)}{2} \left\langle \left\{ D,A \right\}, \left\{ D,B \right\} \right\rangle_{D,f},$$

where [.,.] is the commutator of matrices and $\{.,.\}$ denotes the anticommutator respectively.

For a fixed density matrix $D \in \mathcal{M}_n^1$, function $f \in \mathcal{F}_{op}$ and an N-tuple of nonzero matrices $(A^{(k)})_{k=1,...,N} \in M_{n,sa}$ we define the following $N \times N$ matrices Cov_D , Cov_D^f , $qCov_{D,f}^{as}$ and $qCov_{D,f}^{s}$ with entries

$$[\operatorname{Cov}_D]_{ij} = \operatorname{Cov}_D(A_0^{(i)}, A_0^{(j)}) \qquad \qquad \left[\operatorname{Cov}_D^f\right]_{ij} = \operatorname{Cov}_D^f(A_0^{(i)}, A_0^{(j)})$$

$$\left[\operatorname{qCov}_{D,f}^{as}\right]_{ij} = \operatorname{qCov}_{D,f}^{as}(A_0^{(i)}, A_0^{(j)}) \qquad \qquad \left[\operatorname{qCov}_{D,f}^s\right]_{ij} = \operatorname{qCov}_{D,f}^s(A_0^{(i)}, A_0^{(j)}).$$

Mathematical Toolbox

Petz's scalar produc (1) can be extended: Define

$$\mathcal{C}_{\mathcal{M}} = \left\{ g : \mathbb{R}^+ \times \mathbb{R}^+ \to \mathbb{R}^+ \mid \begin{array}{c} g \text{ is a symmetric smooth function, with analytical} \\ \text{extension defined on a neighborhood of } \mathbb{R}^+ \times \mathbb{R}^+ \end{array} \right\}.$$

Fix a function $g \in \mathcal{C}_{\mathcal{M}}$. Define for every $D \in \mathcal{M}_n$ and for every $A, B \in M_{n,sa}$

$$(A,B)_{D,q} = \operatorname{Tr} \left(Ag(L_{n,D}, R_{n,D})(B) \right).$$

 \Longrightarrow For every $g \in \mathcal{C}_{\mathcal{M}}(\mathcal{M}_n, (\cdot, \cdot)_{\cdot, q})$ is a Riemannian manifold.

Connection to Petz's scalar product: For $f \in \mathcal{F}_{op}$ define $g(x,y) = \frac{1}{yf\left(\frac{x}{y}\right)}$, then we have

$$\langle A, B \rangle_{D,f} = (A, B)_{D,g} \quad \forall D \in \mathcal{M}_n, \, \forall A, B \in M_{n,sa}.$$

Theorem [Andai, Lovas]. Consider a density matrix $D \in \mathcal{M}_n^1$, an N-tuple of observables $(A^{(k)})_{k=1,...,N}$ and functions $g_1,g_2 \in \mathcal{C}_{\mathcal{M}}$ such that

$$g_1(x,y) \ge g_2(x,y) \qquad \forall x,y \in \mathbb{R}^+.$$

Define the $N \times N$ matrices \mathfrak{Cov}_{D,g_1} and \mathfrak{Cov}_{D,g_2} with entries $\left[\mathfrak{Cov}_{D,g_k}\right]_{ij} = (A_0^{(i)},A_0^{(j)})_{D,g_k}$ (k = 1, 2). Then

$$\det(\mathfrak{Cov}_{D,g_1}) \ge \det(\mathfrak{Cov}_{D,g_2}) + \det(\mathfrak{Cov}_{D,g_1} - \mathfrak{Cov}_{D,g_2})$$

holds.

Uncertainty Relations Nowadays

Gibilisco and Isola in 2006 conjectured the inequality $\det(\operatorname{Cov}_D) \ge \det(\operatorname{qCov}_{D,f}^{as})$.

Which was based on numerous partial results for very specific f functions for few (generally 2) observables and the inequalities were expressed in different form. The conjecture was proved by Andai and Gibilisco, Imparato and Isola in 2008.

We have found a more accurate inequality:

Theorem [Lovas, Andai]. For any operator monotone function $f \in \mathcal{F}_{op}$ at every state $D \in \mathcal{M}_n^1$ for every N-tuple of observables $(A^{(k)})_{k=1,...,N}$ we have for the covariance matrices

$$\det(\operatorname{Cov}_D) \ge \det(\operatorname{qCov}_{D,f}^s) \ge \det(\operatorname{qCov}_{D,f}^{as}).$$

We have an estimation for the gap between the symmetric and antisymmetric covariance:

Theorem [Lovas, Andai]. Using the same notation as in the previous Theorem we have

$$\det(\operatorname{qCov}_{D,f}^s) - \det(\operatorname{qCov}_{D,f}^{as}) \ge (2f(0))^N \det(\operatorname{Cov}_D^{f_{RLD}}),$$

where $f_{RLD}(x) = \frac{2x}{1+x}$.

Moreover we have shown that the symmetric covariance generated by the function $f_{opt}(x) = \frac{1}{2} \left(\frac{1+x}{2} + \frac{2x}{1+x} \right)$ is universal in the following sense:

Theorem [Lovas, Andai]. For every function $g \in \mathcal{F}_{op}$ the inequality

$$\det(\operatorname{qCov}_{D,f_{out}}^s) \ge \det(\operatorname{qCov}_{D,q}^{as})$$

holds and f_{opt} gives the best upper bound in \mathcal{F}_{op} .