

A Projection Algorithm Based on the Pythagorian Theorem and Its Applications

Shotaro Akaho¹, Hideitsu Hino², Neneka Nara³, Ken Takano³, Noboru Murata³ ¹ AIST, ² University of Tsukuba, ³ Waseda University

Overview

- A simple and robust method to find α -projection is proposed, which only uses values of α divergence
- Application 1 (m-projection to e-flat subspace): Transfer learning, in which we have only small number of data for a target task while many data are available for similar tasks
- Application 2 (e-projection to m-flat subspace) : Nonnegative matrix factorization, dimension reduction for frequency data

Flat subspace and Pythagorian theorem

Pythagorian theorem[1]

 $-\alpha$ -flat submanifold $M = \{ \sum \theta_i p_i | \sum \theta_i = 1 \},$ p_i : $-\alpha$ affine coordinate of $p_i(x)$

If α -geodesic connecting p and $q \in M$ is orthogonal to M, $r_i = D^{(\alpha)}(p,q) + D^{(\alpha)}(q,p_i) - D^{(\alpha)}(p,p_i) = 0,$

$$D^{(\alpha)}(p,q)$$
: α divergence $p(x)$
 α -geodesic
 $p_3(x)$
 $q(x)$
 $q(x)$
 M : $-\alpha$ -flat

Exponential and mixture

- Important two cases of α are $\alpha = \pm 1$, e(xponential) for $\alpha = 1$, m(ixture) for $\alpha = -1$
- ±1(e and m) divergence is Kullback-Leibler divergence $D^{(m)}(p,q) = D^{(e)}(q,p) = \int p(x) \log \frac{p(x)}{q(x)} dx$

Divergence-based projection algorithm

An algorithm to find the α -projection q

Basic idea

If r_i is larger than zero, q should be closer to p_i , and if r_i is smaller than zero, q should be more distant from p_i

Here we assume $\theta_i \geq 0$ for simplicity Algorithm

- 1. Initialize $\theta_i^{(0)}$
- 2. Repeat the following for t = 0,1,2,... until convergence
 - 1. $q := \sum \theta_i^{(t+1)} p_i$
 - 2. Calculate $r_i = D^{(\alpha)}(p,q) + D^{(\alpha)}(q,p_i) D^{(\alpha)}(p,p_i)$
 - 3. Update θ_i by $\theta_i^{(t+1)} := \theta_i^{(t)} f(r_t)$
 - 4. Normalize $\theta_i^{(t+1)}$

is a monotonically increasing function s.t. f(x) > 0, f(0) = 1 e.g. $f(x) = 2/(1 + \exp(-\beta x))$

Properties of the algorithm

- Simple
- Only dependent on values of divergence
- Robust (if divergence is calculated robustly)

Application 1: Transfer learning by nonparametric e-mixture estimation

Transfer learning

a framework of machine learning, where performance of a certain learning task is improved by using other (similar) tasks. Here, the target empirical distribution is projected onto a subspace spanned by other distributions. **e-mixture** (cf. m-mixture)

$$p_e(x; \theta) = \exp\left(\sum \theta_i \log p_i(x) - b(\theta)\right), \qquad \sum \theta_i = 1$$

The e-mixture satisfies the maximum entropy principle

The problem is to find the m-projection from a target distribution p(x) to an e-flat submanifold spanned by $\log p_i(x)$, which can be optimized by the divergence based projection algorithm.

Characterization of e-mixture based on divergence[2]

e-mixture is characterized by divergence $p_e(x; \theta) = \arg\min_{q} \sum_{i} \theta_i D^{(m)}(q, p_i)$

Nonparametric extension

Target p(x) and auxiliary distributions $p_i(x)$ are all given by empirical distribution

m-representation

Since e-mixture for empirical distributions are not well-defined, so we use the characterization of e-mixture as its definition. The distribution is represented by m-representation $q(x) = \sum w_i \delta(x - x_i)$, $\sum w_i = 1$

Nonparametric estimation of divergence[3]

We use a nearest neighbor based method to estimate between two (weighted) empirical distributions

Nonparametric e-mixture Algorithm

- Initialize θ_i
- 2. Repeat the following until convergence
 - 1. Obtain m-representation w_i to satisfy the characterization of e-mixture by fixing θ_i
 - 2. Estimate divergence $D^{(m)}(q, p_i)$,
 - 3. update θ_i by the divergence-based algorithm

Experiments

Synthetic data (e-mixture of two Gaussians=Gaussian)

EEG data (5 subjects, each one is examined with small data)

subjects/ method	i	ii	iii	iv	v
small	37.22	33.73	29.05	41.27	40.87
	±8.67	± 12.03	± 12.27	± 9.81	± 4.38
uniform	36.03	31.35	39.68	40.63	37.22
	±11.70	± 12.37	± 9.86	± 6.22	± 4.29
reg.	31.51	21.59	31.83	30.08	29.44
	±9.79	± 9.47	± 11.22	± 11.90	± 12.40
e-mixture	29.12	23.57	35.71	30.00	27.22
	±9.07	± 10.97	± 10.77	± 12.28	± 10.04

Application 2: Nonnegative matrix factorization

Nonnegative matrix factorization

- Dimension reduction in the space of positive value matrix $Q \cong PW$
- Using column-wise normalization operator Π , $\Pi[Q] \cong \Pi[P]\Pi[W]$
- This model is called "topic models" in machine learning community, in particular natural language processing (pLSA, LDA, etc.) [documents-words] = [documents-topics] x [topics-words]
- P: basis vectors, W: coefficients vectors

Optimization criterion

- The problem is to find m-flat subspace M spanned by P
- Ordinary pLSA optimizes parameters by max likelihood, which is equivalent to m-projection
- However, e-projection is more natural from geometrical viewpoint[4]
- Resulting optimization problem is
- $\min_{P,W} \sum D^{(e)}(q_j, \hat{q}_j), \qquad \hat{q}_j \in M \text{ is a projection of } q_i$
- Alternating optimization algorithm
 - Repeat the following two steps (e-projection to m-flat subspace) until convergence
 - Optimize *P* with fixing *W*
 - 2. Optimize *W* with fixing *P*

Experiments

Comparison with existing method[5] by synthetic data $(50x4 \rightarrow 50x3)$

]	Number of improvements	199/200
]	Reduced error ratio[%]	2.34

References

- Amari, S. (1985) Differential-Geometrical Methods in Statistics, Springer
- Murata, N., Fujimoto, Y. (2009) Bregman divergence and density integration, Journal of Math for Industry, 1, 97-104
- Hino, H., Murata, N. (2013) Information estimators for weighted observations, *Neural Networks*, 1, 260-275
- Akaho, S. (2004) The e-PCA and m-PCA: dimension reduction of parameters by information geometry, In Proc. of IJCNN, 129-134
- Sra, S., Dhillon, I. S. (2005) Generalized nonnegative matrix approximations with Bregman divergences. In *NIPS*, 283-290

Basis 1

Basis 2

Data k

Data 1