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* Asimple and robust method to find a-projection Is
proposed, which only uses values of a divergence

o Application 1 (m-projection to e-flat subspace) :

ransfer learning, in which we have only small
number of data for a target task while many data are
avallable for similar tasks

o Application 2 (e-projection to m-flat subspace) :

for frequency data

Nonnegative matrix factorization, dimension reduction

Flat subspace an

Pythagorian theorem|[1]
—a-flat submanifold M = {} 9, p;| X, 0; = 1},
p;. —a affine coordinate of p; (x)

If @-geodesic connecting p and g € M is orthogonal to M,
;=D (p,q) + D (q,p) — D (p,p) =0,
D@ (p,q): a divergence

op()
a-geodesic

P (x) p2(x)

M: —a-flat

p1(x

Exponential and mixture
e Important two cases of o are a« = +1,
e(xponential) for ¢ = 1,
m(ixture) for ¢ = —1
e +1(e and m) divergence is Kullback-Leibler divergence

m e B p(x)
DM (p,q) = D (q,p) = p(x)logq(x) dx

Application 1: Transfer lear

Transfer learning

a framework of machine learning, where performance of a certain learning task is improved by using other

(similar) tasks. Here, the target empirical distribution is projected onto a subspace spanned by other distributions.

e-mixture (cf. m-mixture)

Pe(x; ) = exp (Z 0;logp;(x) — b(H)), z 0; =1

The e-mixture satisfies the maximum entropy principle

The problem is to find the m-projection from a target distribution p(x) to an e-flat submanifold spanned by

log p; (x), which can be optimized by the divergence based projection algorithm.

Characterization of e-mixture based on divergence[2]

e-mixture is characterized by divergence Pe(x; ) = arg min Y. 6;D) (q,p;)

Nonparametric extension

Target p(x) and auxiliary distributions p; (x) are all given by empirical distribution

m-representation

Since e-mixture for empirical distributions are not well-defined, so we use the characterization of e-mixture as
its definition. The distribution is represented by m-representation q(x) = »w;8 (x

Nonparametric estimation of divergence[3]

- x;), Tw;j=1

We use a nearest neighbor based method to estimate between two (weighted) empirical distributions

Nonparametric e-mixture Algorithm
1. Initialize 9;
2. Repeat the following until convergence

1. Obtain m-representation w; to satisfy the characterization of e-mixture by fixing 6;

2. Estimate divergence D™ (g, p,),

3. update 6; by the divergence-based algorithm
Experiments
Synthetic data (e-mixture of two Gaussians=Gaussian)
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e-mixture small dataset estimated

EEG data (5 subjects,

each one Is examined with small data)
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small

29.05
+12.27

41.27
+9.81

40.87
+4.38

uniform

39.68
+9.86

40.63
+6.22

37.22
+4.29

reg.

31.83
+11.22

30.08
+11.90

29.44
+12.40

e-mixture

35.71
+10.77

30.00
+12.28

27.22
+10.04

Divergence-bas

An algorithm to find the a-projection g

Basic idea
If r; Is larger than zero, g should be closer to p;, and
If r; Is smaller than zero, g should be more distant from p;

(r, > 0 p N (<o p N
A/@ @L@
P2 q P2

\_DP1 J \W1 Y,

Increase weight 9, decrease weight 6,

(r—O p )

L=
&ﬁq P2

\P1 J

Here we assume 6; > 0 for simplicity
Algorithm

1. Initialize §*

2. Repeat the following for t = 0,1,2, ... until convergence
1. q=%6""p
2. Calculate r; = D@ (p, q) + D@ (q,p;) — D@ (p, p;)
3. Update 6; by Hl.(”l) = Ql.(t) f(ro)
4. Normalize g*+Y

f 1s a monotonically increasing function

Properties of the algorithm

o Simple

* Only dependent on values of divergence

* Robust (if divergence is calculated robustly)

Application 2: Non

Nonnegative matrix factorization

* Dimension reduction in the space of positive value matrix Q = PW

« Using column-wise normalization operator II, IT1[Q] = II[P]II[W]

o This model is called “topic models” in machine learning community,
In particular natural language processing (pLSA, LDA, etc.)

[documents-words] = [documents-topics] x [topics-words]
e P: basis vectors, W: coefficients vectors
Optimization criterion
e The problem is to find m-flat subspace M spanned by P
e Ordinary pLSA optimizes parameters by max likelihood,
which Is equivalent to m-projection
e However, e-projection is more natural from geometrical
viewpoint[4]
e Resulting optimization problem is

rgl%lZD(e)(qj,c?j), d; € M isa projection of q;
» Alternating optimization algorithm

Repeat the following two steps (e-projection to m-flat subspace) until convergence

1. Optimize P with fixing W
2. Optimize W with fixing P
Experiments

Comparison with existing method[5] by synthetic data (50x4—50x3)

Number of improvements 199/200

Reduced error ratio[%] 2.34

Data distr.1 | Data distr.k
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s.t. f(x) >0,f(0) =1eg. f(x) =2/(1 + exp(—fx))
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