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Overview 

• A simple and robust method to find 𝛼𝛼-projection is 
proposed, which only uses values of 𝛼𝛼 divergence 

• Application 1 (m-projection to e-flat subspace) : 
Transfer learning, in which we have only small 
number of data for a target task while many data are 
available for similar tasks 

• Application 2 (e-projection to m-flat subspace) : 
Nonnegative matrix factorization, dimension reduction 
for frequency data 

Flat subspace and Pythagorian theorem 

Divergence-based projection algorithm 

Application 1: Transfer learning by nonparametric e-mixture estimation 

Transfer learning  
a framework of machine learning, where performance of a certain learning task is improved by using other 
(similar) tasks. Here, the target empirical distribution is projected onto a subspace spanned by other distributions. 
e-mixture (cf. m-mixture) 

𝑝𝑝𝑒𝑒 𝑥𝑥;𝜃𝜃 = exp �𝜃𝜃𝑖𝑖 log 𝑝𝑝𝑖𝑖 𝑥𝑥 − 𝑏𝑏 𝜃𝜃 , �𝜃𝜃𝑖𝑖 = 1 

The e-mixture satisfies the maximum entropy principle 
The problem is to find the m-projection from a target distribution 𝑝𝑝 𝑥𝑥  to an e-flat submanifold spanned by 
log 𝑝𝑝𝑖𝑖(𝑥𝑥), which can be optimized by the divergence based projection algorithm. 
Characterization of e-mixture based on divergence[2] 
e-mixture is characterized by divergence 𝑝𝑝𝑒𝑒 𝑥𝑥; 𝜃𝜃 = arg min

𝑞𝑞
∑ 𝜃𝜃𝑖𝑖𝐷𝐷 𝑚𝑚 (𝑞𝑞, 𝑝𝑝𝑖𝑖) 

Nonparametric extension 
Target 𝑝𝑝(𝑥𝑥) and auxiliary distributions 𝑝𝑝𝑖𝑖(𝑥𝑥) are all given by empirical distribution 
m-representation 
Since e-mixture for empirical distributions are not well-defined, so we use the characterization of e-mixture as 
its definition. The distribution is represented by m-representation 𝑞𝑞 𝑥𝑥 = ∑𝑤𝑤𝑗𝑗𝛿𝛿 𝑥𝑥 − 𝑥𝑥𝑗𝑗 ,  ∑𝑤𝑤𝑗𝑗 = 1 
Nonparametric estimation of divergence[3] 
We use a nearest neighbor based method to estimate between two (weighted) empirical distributions 

Nonparametric e-mixture Algorithm 
1. Initialize 𝜃𝜃𝑖𝑖 
2. Repeat the following until convergence 

1. Obtain m-representation 𝑤𝑤𝑗𝑗 to satisfy the characterization of e-mixture by fixing 𝜃𝜃𝑖𝑖 
2. Estimate divergence 𝐷𝐷(𝑚𝑚) 𝑞𝑞, 𝑝𝑝𝑖𝑖 ,  
3. update 𝜃𝜃𝑖𝑖 by the divergence-based algorithm 

Experiments 
Synthetic data (e-mixture of two Gaussians=Gaussian)   EEG data (5 subjects,   
        each one is examined with small data) 
 

Application 2:  Nonnegative matrix factorization 

Nonnegative matrix factorization 
• Dimension reduction in the space of positive value matrix 𝑄𝑄 ≅ 𝑃𝑃𝑃𝑃 
• Using column-wise normalization operator Π, Π 𝑄𝑄 ≅ Π[𝑃𝑃]Π[𝑊𝑊] 
• This model is called “topic models” in machine learning community,  

in particular natural language processing (pLSA, LDA, etc.) 
  [documents-words] = [documents-topics] x [topics-words]  

• 𝑃𝑃:  basis vectors, 𝑊𝑊: coefficients vectors 
Optimization criterion  
• The problem is to find m-flat subspace 𝑀𝑀 spanned by 𝑃𝑃 
• Ordinary pLSA optimizes parameters by max likelihood, 

which is equivalent to m-projection 
• However, e-projection is more natural from geometrical 

viewpoint[4] 
• Resulting optimization problem is 

min
𝑃𝑃,𝑊𝑊

∑𝐷𝐷 𝑒𝑒 (𝑞𝑞𝑗𝑗 , 𝑞𝑞�𝑗𝑗),  𝑞𝑞�𝑗𝑗 ∈ 𝑀𝑀  is a projection of 𝑞𝑞𝑗𝑗 
• Alternating optimization algorithm 

Repeat the following two steps (e-projection to m-flat subspace) until convergence 
1. Optimize 𝑃𝑃 with fixing 𝑊𝑊 
2. Optimize 𝑊𝑊 with fixing 𝑃𝑃 

Experiments 
  Comparison with existing method[5] by synthetic data (50x4→50x3) 

Pythagorian theorem[1] 
−𝛼𝛼-flat submanifold 𝑀𝑀 = ∑𝜃𝜃𝑖𝑖 𝑝𝑝𝑖𝑖 ∑ 𝜃𝜃𝑖𝑖 = 1 ,  
  𝑝𝑝𝑖𝑖: −𝛼𝛼 affine coordinate of 𝑝𝑝𝑖𝑖 𝑥𝑥  
 
If 𝛼𝛼-geodesic connecting 𝑝𝑝 and 𝑞𝑞 ∈ 𝑀𝑀 is orthogonal to 𝑀𝑀, 

 𝑟𝑟𝑖𝑖 = 𝐷𝐷 𝛼𝛼 𝑝𝑝, 𝑞𝑞 + 𝐷𝐷 𝛼𝛼 𝑞𝑞, 𝑝𝑝𝑖𝑖 − 𝐷𝐷 𝛼𝛼 𝑝𝑝, 𝑝𝑝𝑖𝑖 = 0, 
                𝐷𝐷 𝛼𝛼 (𝑝𝑝, 𝑞𝑞):  𝛼𝛼 divergence 
 
 
 
 
 
 
 
Exponential and mixture 
• Important two cases of 𝛼𝛼 are 𝛼𝛼 = ±1,  

 e(xponential) for 𝛼𝛼 = 1, 
 m(ixture) for 𝛼𝛼 = −1 
• ±1(e and m) divergence is Kullback-Leibler divergence 

𝐷𝐷(𝑚𝑚) 𝑝𝑝, 𝑞𝑞 = 𝐷𝐷(𝑒𝑒) 𝑞𝑞, 𝑝𝑝 = ∫ 𝑝𝑝 𝑥𝑥 log
𝑝𝑝(𝑥𝑥)
𝑞𝑞(𝑥𝑥)

𝑑𝑑𝑑𝑑 

𝑝𝑝1(𝑥𝑥) 

𝑝𝑝2(𝑥𝑥) 𝑝𝑝3(𝑥𝑥) 

𝑞𝑞(𝑥𝑥) 
𝑀𝑀:  −𝛼𝛼-flat 

𝛼𝛼-geodesic 

An algorithm to find the 𝛼𝛼-projection 𝑞𝑞 
   
Basic idea 
If 𝑟𝑟𝑖𝑖 is larger than zero,  𝑞𝑞 should be closer to 𝑝𝑝𝑖𝑖, and 
if 𝑟𝑟𝑖𝑖 is smaller than zero,  𝑞𝑞 should be more distant from 𝑝𝑝𝑖𝑖 
 
 
 
 
 
 
 
 
 
 
 
Here we assume 𝜃𝜃𝑖𝑖 ≥ 0 for simplicity 
Algorithm 
1. Initialize 𝜃𝜃𝑖𝑖

(0) 
2. Repeat the following for  𝑡𝑡 = 0,1,2, … until convergence 

1.  𝑞𝑞 ≔ ∑𝜃𝜃𝑖𝑖
(𝑡𝑡+1) 𝑝𝑝𝑖𝑖 

2. Calculate 𝑟𝑟𝑖𝑖 = 𝐷𝐷 𝛼𝛼 𝑝𝑝, 𝑞𝑞 + 𝐷𝐷 𝛼𝛼 𝑞𝑞,𝑝𝑝𝑖𝑖 − 𝐷𝐷 𝛼𝛼 𝑝𝑝, 𝑝𝑝𝑖𝑖  
3. Update 𝜃𝜃𝑖𝑖 by 𝜃𝜃𝑖𝑖

(𝑡𝑡+1) ≔ 𝜃𝜃𝑖𝑖
(𝑡𝑡)𝑓𝑓(𝑟𝑟t) 

4. Normalize 𝜃𝜃𝑖𝑖
(𝑡𝑡+1) 

 
𝑓𝑓  is a monotonically increasing function  
          s.t. 𝑓𝑓 𝑥𝑥 > 0, 𝑓𝑓 0 = 1 e.g. 𝑓𝑓 𝑥𝑥 = 2/(1 + exp −𝛽𝛽𝛽𝛽 ) 
 

Properties of the algorithm 
• Simple 
• Only dependent on values of divergence 
• Robust (if divergence is calculated robustly) 

 

e-mixture          small dataset         estimated 

Data distr.1 Data distr.k Component distr. 

Data 1 

Data k 

Basis 2 

Basis 1 

Number of improvements 199/200 

Reduced error ratio[%] 2.34 

𝑝𝑝 𝑟𝑟1 > 0 

𝑝𝑝1 
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𝑞𝑞 
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