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Probabilistic models on discrete space are useful and parameter estimation of
probabilistic models on discrete space is a popular and important issue. For example,
the restricted Boltzmann machine (RBM) attracts increasing attention in the con-
text of Deep learning [1]. The Maximum Likelihood Estimation (MLE) is popular
method for parameter estimation, but constructions for probabilistic models on the
discrete space are often difficult because of the normalization constant which some-
times requires exponential order computation. To avoid the problem, various kinds
of methods have been proposed. The contrastive divergence [2] avoids the exponen-
tial order calculation using the Markov Chain Monte Carlo (MCMC) sampling. The
score matching method [3] and the proper local scoring rules [4] utilize information
of “neighbor” and estimate parameter without calculation of the normalization con-
stant. [5] avoids the calculation of normalization constant by employing homogeneous
divergence and a technique of empirical localization for unnormalized model.

In this paper, we focus on a deformed Bregman divergence [6] to estimate param-
eters of probabilistic models on discrete space. By combining the deformed Bregman
divergence and the technique of the empirical localization, we propose an estima-
tor, which can be constructed without calculation of the normalization constant and
is asymptotically efficient as the MLE. Some experiments show that the proposed
estimator attains comparable performance to the MLE with drastically lower compu-
tational cost.
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