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The state of a quantum system is described by a wave function, this is a normalized
element v of a Hilbert space, or by a density matrix p, which is a trace-class operator
with trace 1 and non-negative eigenvalues. Typical for a quantum measurement is
that it does not reveal the state of the system up to some measurement error. This
is a major deviation from the situation in classical systems. If one measures the
speed of say a car then the result is a number which usually is a good approximation
of the actual speed of the car. This is not the case for quantum measurements.
The measurement process itself must be described in quantum-mechanical terms.
The coupling between the system at hand and the measurement apparatus fixes an
orthonormal basis (e,), in the Hilbert space of quantum states. The outcome of
the experiment is then that the state of the system is e, with probability |(e,|1)|?,
where (-|-) denotes the inner product of the Hilbert space. This phenomenon is known
as the collapse of the wave function. From these probabilities one can then try to
reconstruct the original wave function v by repeating the measurement under identical
initial conditions.

The point of view here is that the experimental setup necessarily introduces a
condition on the outcomes of the experiment. Conditional expectations have been
studied in quantum probability theory [4]. The origin of these studies is the discovery
[1] of a link with the Tomita-Takesaki theory, which describes one-parameter groups
of automorphisms of von Neumann algebras. The condition that the outcome of the
experiment is an element of an orthonormal basis is a conditional expectation in this
mathematical sense.

The probabilities |{e,,|1)|> can now be explained in geometrical terms. The quan-
tum analogue of the Kullback-Leibler divergence is given by

D(ol|lp) = Trolno — Tro In p. (1)

Here, o and p are density matrices. Assume now that o is the orthogonal projection
onto the multiples of the wave function v and that p is conditioned to be diagonal



in the given basis (e,,),. Then the divergence D(o||p) is minimal when the diagonal
elements of the matrix p equal the probabilities |(e,|1)|?. One concludes that the
experimental outcome is given by the density matrix which minimizes the divergence
D(o||p) under the condition that the matrix p is diagonal. This minimization process is
equivalent to an orthogonal projection onto the manifold of diagonal density matrices.

At the end of the previous century physicists succeeded in devising experiments
which avoid the collapse of the wave function. In some cases, thousands of consecutive
measurements are possible [3] before the collapse of the wave function is reached.
Such measurements are now referred to as weak measurements. In a typical setup
the system under study is weakly coupled to a second quantum system. On the latter
strong measurements are performed as usual. By keeping the coupling between the
two subsystems very weak the system of interest is not too much disturbed by the
measurements. In addition, by a proper choice of basis vectors the sensitivity of the
experiment can be increased [2]. The latter can be understood from the fact that the
divergence function diverges at the borders of the manifold [5].
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