Revisit to the autoparallelity and the canonical divergence for dually flat spaces

Hiroshi Nagaoka

Graduate School of Informatics and Engineering The University of Electro-Communications Chofu, Tokyo 182-8585, Japan e-mail: nagaoka@is.uec.ac.jp

Let (S, g, ∇, ∇^*) be a finite-dimensional dually flat space with the canonical divergence D, including the representative example where S is an exponential family, gis the Fisher metric, ∇ and ∇^* are the e, m-connections and D is the relative entropy (KL divergence). A submanifold M is said to be ∇ -autoparallel (∇^* -autoparallel, resp.) when M forms an open subset of an affine subspace in the coordinate space of a ∇ -affine (∇^* -affine, resp.) coordinate system. Note that, when M is either ∇ autoparallel or ∇^* -autoparallel, M itself becomes dually flat. For a submanifold Mof S, the following three conditions are shown to be equivalent.

- 1. There exists a ∇ -autoparallel submanifold K of S such that M is a ∇^* autoparallel submanifold of K.
- 2. There exists a ∇^* -autoparallel submanifold K of S such that M is a ∇ autoparallel submanifold of K.
- 3. *M* is a dually flat space for which the canonical divergence is the restriction $D|_{M \times M}$ of *D*.

In addition, a submanifold M satisfying (1)-(3) can be represented as $M = K_1 \cap K_2$ by a ∇ -autoparallel K_1 and a ∇^* -autoparallel K_2 . An important example is given by $S = P(\mathcal{X}^n)$ (the set of positive *n*-joint distributions) with K_1 being the exponential family consisting of markovian distributions and K_2 being the mixture family consisting of stationary distributions, so that the set $M = K_1 \cap K_2$ of stationary markovian distributions becomes dually flat with the relative entropy as the canonical divergence.