Estimation in a Deformed Exponential Family

Harsha K V *
kv.harsha@yahoo.com

Subrahamanian Moosath K S
Department of Mathematics
Indian Institute of Space Science and Technology
Thiruvananthapuram-695547, Kerala, India
smoosath@iist.ac.in

In this paper we discuss about certain generalized notions of maximum likelihood estimator and estimation problem in a deformed exponential family. A deformed exponential family has two dually flat structures, U-geometry by Naudts [1] and the χ-geometry by Amari et al. [2]. First we recall the U-estimator defined by Eguchi et al. [3] in a deformed exponential family and its properties. A proof of the generalized Cramer-Rao bound defined by Naudts [1] is given. Then we give a proof of the result that in a deformed exponential family the U-estimator for the dual coordinate in the U-geometry is optimal with respect to the generalized Cramer-Rao bound defined by Naudts.

A generalized MLE called the maximum F-likelihood estimator (F-MLE) is defined in a deformed exponential family. Then we show that F-MLE is given in terms of the dual coordinate in the χ-geometry. Finally we pose an open problem regarding the consistency and efficiency of the F-MLE in a deformed exponential family.

Keywords: Deformed exponential family, U-estimator, F-MLE, U-geometry, χ geometry
Acknowledgments
We express our sincere gratitude to Prof. Shun-ichi Amari for the fruitful discussions.

References

[1] Naudts J. (2004), Estimators, escort probabilities, and ϕ-exponential families in statistical physics. Journal of Inequalities in Pure and Applied Mathematics, 5(4), Article 102.
[2] Amari S., Ohara A. and Matsuzoe H. (2012), Geometry of deformed exponential families: Invariant, dually flat and conformal geometries. Physica A: Statistical Mechanics and its Applications, 391: 4308-4319.

[^0][3] Eguchi S., Komori o. and Ohara A. (2014), Duality of Maximum Entropy and Minimum Divergence. Entropy, 16: 3552-3572.

[^0]: * Visiting Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai400076, Maharashtra, India

