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In this paper we discuss about certain generalized notions of maximum likelihood
estimator and estimation problem in a deformed exponential family. A deformed
exponential family has two dually flat structures, U -geometry by Naudts [1] and the
χ-geometry by Amari et al. [2]. First we recall the U -estimator defined by Eguchi et
al. [3] in a deformed exponential family and its properties. A proof of the generalized
Cramer-Rao bound defined by Naudts [1] is given. Then we give a proof of the result
that in a deformed exponential family the U -estimator for the dual coordinate in the
U -geometry is optimal with respect to the generalized Cramer-Rao bound defined by
Naudts.

A generalized MLE called the maximum F -likelihood estimator (F -MLE) is de-
fined in a deformed exponential family. Then we show that F -MLE is given in terms
of the dual coordinate in the χ-geometry. Finally we pose an open problem regarding
the consistency and efficiency of the F -MLE in a deformed exponential family.
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