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Recently, Müller-Lennert et al. [9] and Wilde et al. [11] independently proposed
an extension of the Rényi relative entropy [10] to the quantum domain. Let L(H)
and Lsa(H) denote the set of linear operators and selfadjoint operators on a finite
dimensional complex Hilbert space H, and let L+(H) and L++(H) denote the subset
of Lsa(H) comprising positive operators and strictly positive operators. Given ρ, σ ∈
L+(H) with ρ 6= 0, let,
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for α ∈ (0, 1) ∪ (1,∞), with the convention that D̃α(ρ||σ) = ∞ if α > 1 and kerσ 6⊂
ker ρ. The quantity (1) is called the quantum Rényi divergence in [9] or the sandwiched
Rényi relative entropy in [11], and is extended to α = 1 by continuity, to obtain the
von Neumann relative entropy. The limiting cases α ↓ 0 and α → ∞ have also
been studied in [4, 2] and [9], respectively. The sandwiched Rényi relative entropy
has several desirable properties: amongst others, if α ≥ 1

2 , it is monotone under
completely positive trace preserving maps [9, 11, 3, 6]. This property was successfully
used in studying the strong converse properties of the channel capacity [11, 8] and
the quantum hypothesis testing problem [7].

Now we confine our attention to the case when both ρ and σ are faithful density
operators that belong to the quantum state space S(H) := {ρ ∈ L++(H) | Tr ρ = 1}.
In this case there is no difficulty in extending the quantity (1) to the region α < 0.
However, it does not seem to give a reasonable measure of information for α < 0
[10], since it takes negative values. Motivated by this fact, we study the “rescaled”
sandwiched Rényi relative entropy:

Dα(ρ‖σ) :=
1

α
D̃α(ρ‖σ) =

1

α(α− 1)
log Tr

(
σ

1−α
2α ρ σ

1−α
2α

)α
(2)

for α ∈ R\{0, 1} and ρ, σ ∈ S(H), and is extended to α = 1 by continuity. We
shall call the quantity (2) as the sandwiched Rényi α-divergence. In particular, we



are interested in the information geometrical structure [1, 5] induced from (2) on the
quantum state space S(H).

Theorem 1. The induced Riemannian metric g(Dα) is monotone under completely
positive trace preserving maps if and only if α ∈ (−∞,−1] ∪ [ 12 ,∞).

As a by-product, we arrive at the following corollary, the latter part of which was
first observed by numerical evaluation [9].

Corollary 2. The sandwiched Rényi α-divergence Dα(ρ||σ) is not monotone under
completely positive trace preserving maps if α ∈ (−1, 0) ∪ (0, 12 ). Consequently, the

original sandwiched Rényi relative entropy D̃α(ρ||σ) is not monotone if α ∈ (0, 12 ).

We also studied the dualistic structure (g(Dα),∇(Dα),∇(Dα)∗) on the quantum
state space S(H), and obtained the following

Theorem 3. The quantum statistical manifold (S(H), g(Dα),∇(Dα),∇(Dα)∗) is dually
flat if and only if α = 1.
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