KÄHLER AND PARA-KÄHLER STRUCTURES FOR INFORMATION GEOMETRY

Teng Fei

Massachusetts Institute of Technology Cambridge, Massachusetts, USA e-mail: tfei@mit.edu Jun Zhang*
University of Michigan
Ann Arbor, Michigan, USA
e-mail: junz@umich.edu

Let \mathcal{M} be a smooth (real) manifold of even dimensions and ∇ be a (not necessarily torsion-free) connection on it. We study the interaction of ∇ with three compatible geometric structures on \mathcal{M} : a pseudo-Riemannian metric g, a nondegenerate two-form ω , and a tangent bundle isomorphism $L: T\mathcal{M} \to T\mathcal{M}$. Two special cases of L are: almost complex structure $L^2 = -id$ and almost para-complex structure $L^2 = id$, which will be treated in a unified fashion. When both g and ω are parallel under a torsion-free ∇ , it is well known that L and ω are integrable, turning an almost (para-)Hermitian manifold (\mathcal{M}, g, L) into an (para-)Kähler manifold $(\mathcal{M}, g, \omega, L)$, where (g, ω, L) forms "compatible triple". We relax the condition of parallelism under ∇ to the condition of Codazzi coupling with ∇ , for each member of the triple.

To this end, we define an almost Codazzi- $(para-)K\ddot{a}hler\ manifold\ (\mathcal{M},g,L,\nabla)$ to be an almost (para-)Hermitian manifold (\mathcal{M},g,L) with an affine connection ∇ (not necessarily torsion-free) which is Codazzi-coupled to both g and L. We prove that if ∇ is torsion-free, then L is automatically integrable and ω is parallel. In this case, (\mathcal{M},g,L,∇) is said to be a Codazzi- $(para-)K\ddot{a}hler\ manifold$.

Definitions. Let ∇ be a torsion-free connection on \mathcal{M} , g and ω be symmetric and skew-symmetric non-degenerate (0,2)-tensor fields respectively, and L be an almost (para-)complex structure. Consider the following relations (for arbitrary vector fields X, Y, Z on \mathcal{M}):

- (i) $\omega(X,Y) = g(LX,Y);$
- (ii) g(LX, Y) + g(X, LY) = 0;
- (iii) $\omega(LX,Y) = \omega(LY,X);$
- (iv) $(\nabla_X L)Y = (\nabla_Y L)X;$
- (v) $(\nabla_X g)(Y, Z) = (\nabla_Y g)(X, Z);$
- (vi) $(\nabla_X \omega)(Y, Z) = 0$.

Conditions (i)-(iii) define a *compatible triple* (g, ω, L) – any two of the three specifies the third. Condition (iv), (v), and (vi) defines *Codazzi coupling* with ∇ for L, g,

and ω , respectively. We call (g, ω, L, ∇) a compatible quadruple on \mathcal{M} if Conditions (i)-(vi) are all satisfied.

Our results are shown as the following two main Theorems.

Theorem 1. Let \mathcal{M} admit a torsion-free connection ∇ , along with any two of the three tensor fields: g, ω, L . Then \mathcal{M} is a Codazzi-(para-)Kähler manifold if and only if any of the following conditions holds (which then implies the rest):

- 1. (g, L, ∇) satisfy (ii), (iv) and (v);
- 2. (ω, L, ∇) satisfy (iii), (iv) and (vi);
- 3. (g, ω, ∇) satisfy (v) and (vi), in which case L is determined by (i).

Furthermore, (g, ω, L, ∇) forms a compatible quadruple on \mathcal{M} .

An alternative characterization of the above finding is through relationships among the three transformations of a (not necessarily torsion-free) connection ∇ : its g-conjugate ∇^* , its ω -conjugate ∇^{\dagger} , and its L-gauge transform ∇^L .

Theorem 2. Let (g, ω, L) be a compatible triple. Then $(id, *, \dagger, L)$ act as the 4-element Klein group on the space of affine connections:

$$(\nabla^*)^* = (\nabla^\dagger)^\dagger = (\nabla^L)^L = \nabla;$$

$$\nabla^* = (\nabla^\dagger)^L = (\nabla^L)^\dagger;$$

$$\nabla^\dagger = (\nabla^*)^L = (\nabla^L)^*;$$

$$\nabla^L = (\nabla^*)^\dagger = (\nabla^\dagger)^*.$$

It follows that any Codazzi-(para-) Kähler manifold admits a Codazzi dual ∇^C of ∇ , defined as $\nabla^* = \nabla^L$, satisfying

- (iv) $(\nabla^C_X L)Y = (\nabla^C_Y L)X$;
- (v) $(\nabla_X^C g)(Y, Z) = (\nabla_Y^C g)(X, Z);$
- (vi) $(\nabla_X^C \omega)(Y, Z) = 0.$

To summarize: Codazzi-(para-)Kähler manifold is a (para-)Kähler manifold that is simultaneously a statistical manifold. A statistical structure (g, ∇) can be enhanced to a Codazzi-(para-)Kähler structure, which is a special kind of (para-)Kähler manifold, with the introduction of a "nice enough" L in the sense that L is compatible with g and Codazzi coupled to ∇ . When ∇ is dually flat (i.e., Hessian statistical structure), we get the so-called "special Kähler geometry."

Keywords: symplectic, Codazzi dual, compatible triple, compatible quadruple

References

[1] T. Fei and J. Zhang (preprint). Interaction of Codazzi coupling and (para)-Kähler geometry.