
INFORMATION DECOMPOSITION BASED ON

COMMON INFORMATION

Pradeep Kr. Banerjee
Max Planck Institute for Mathematics in the Sciences,

Leipzig, Germany,

e-mail: pradeep@mis.mpg.de

The total mutual information (MI) that a pair of predictor random variables (RVs)
(X1,X2) convey about a target RV Y can have aspects of synergistic information (con-
veyed only by the joint RV (X1X2), denoted SI({X1X2};Y )), of redundant informa-
tion (conveyed identically by bothX1 andX2, denoted I∩({X1,X2};Y )), and of unique
information (conveyed exclusively by either X1 or X2, denoted resp. UI({X1};Y ) and
UI({X2};Y )). We have [1]

I(X1X2;Y ) = I∩({X1,X2};Y ) + SI({X1X2};Y ) + UI({X1};Y ) + UI({X2};Y )

I(Xi;Y ) = I∩({X1,X2};Y ) + UI({Xi};Y ), i = 1,2 (1)

In this note, we show that a recently proposed measure of I∩ inspired by the information-
theoretic notion of common information (due to Gács and Körner) cannot induce a
nonnegative decomposition of I(X1X2;Y ).

Consider the And mechanism, Y = And(X1,X2), where Xi = Bernoulli( 12 ),
i = 1,2 and joint pmf pX1X2Y is such that p(000) = p(010) = p(100) = p(111) = 1
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The decomposition evinces both synergistic and redundant contributions to the total
MI. First note that X1 ⊥ X2, but X1 ̸⊥ X2|Y since I(X1;X2|Y ) = +.189 ̸= 0. Fix-
ing Y induces correlations between X1 and X2 when there was none to start with.
The induced correlations are the source of positive synergy. The redundancy can be
explained by noting that if either X1 = 0 or X2 = 0, then both X1 and X2 can
exclude the possibility of Y = 1 with probability of agreement one. Hence the latter
is nontrivial information shared between X1 and X2. For independent X1 and X2,
when one can attribute any nonzero redundancy entirely to the mechanism, there is
some consensus that I∩({X1,X2};Y ) = 3
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3 = +.311 and SI({X1X2};Y ) = +.5 [2].

Given two RVs (X,Y ), Gács and Körner (GK) defined the notion of a common RV
to capture the dependence between X and Y and showed that in general, common
information does not account for all the mutual information between X and Y . A
measure of I∩ was defined in [2] to measure how well the redundancy that X1 and
X2 share about Y can be captured by a RV.

I∩({X1,X2};Y ) ..= max
Q: Q−X1−Y

Q−X2−Y

I(Q;Y ), (2)



Figure 1: I -diagrams for proof of Lemma 1. Denoting the I-Measure of RVs
(Q,X1,X2,Y ) by µ∗, the atoms on which µ∗ vanishes are marked by an asterisk.

where we consider only X1, X2 and Y with finite alphabets X1,X2 and Y resp.
and it suffices to restrict ourselves to pQ|X1X2Y with alphabet Q such that |Q| ≤
|X1||X2||Y|+ 3. Intuitively, if Q specifies the optimal redundant RV, then condition-
ing on any predictor Xi should remove all the redundant information about Y , i.e.,
I(Q;Y |Xi) = 0, i = 1,2. We show that for independent X1 and X2, if Y is a function
of X1 and X2 when any positive redundancy can be attributed solely to the func-
tion (e.g., as in the And mechanism above), I∩ defined as per (2) fails to capture a
nonnegative decomposition.

For finite RVs, there is a one-to-one correspondence between Shannon’s informa-
tion measures and a signed measure µ∗ over sets, called the I-measure. We denote
the I-Measure of RVs (Q,X1,X2,Y ) by µ∗. We use X to also label the corresponding
set in the Information or I-diagram. The I-diagrams in Fig. 1 are valid diagrams
since the sets Q,X1,X2,Y intersect each other generically and the region representing
the set Q splits each atom into two smaller ones.

Lemma 1. (a) If X1 ⊥ X2, then I∩({X1,X2};Y ) = 0. (b) If X1 − Y − X2, then
SI({X1X2};Y ) ≤ 0.

Proof. (a)The atoms on which µ∗ vanishes when the Markov chains Q−X1 − Y and
Q − X2 − Y hold and X1 ⊥ X2 are shown in the generic I-diagram in Fig. 1(a);
µ∗(Q ∩ Y ) = 0 which gives (a).
(b)The atoms on which µ∗ vanishes when the Markov chains Q−X1−Y , Q−X2−Y
and X1 − Y −X2 hold are shown in the I-diagram in Fig. 1(b). In general, for the
atom X1∩X2∩Y , µ∗ can be negative. However, since X1−Y −X2 is a Markov chain
by assumption, we have µ∗(X1 ∩ X2 ∩ Y ) = µ∗(X1 ∩ X2) ≥ 0. Then µ∗(Q ∩ Y ) ≤
µ∗(X1 ∩ X2), which gives I∩({X1,X2};Y ) ≤ I(X1;X2). From (1), if X1 − Y − X2,
then the derived synergy measure is SI({X1X2};Y ) = I∩({X1,X2};Y )−I(X1;X2) ≤ 0
which gives the desired claim.
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