INFORMATION DECOMPOSITION BASED ON COMMON INFORMATION

Pradeep Kr. Banerjee

Max Planck Institute for Mathematics in the Sciences,

Leipzig, Germany,

e-mail: pradeep@mis.mpg.de

The total mutual information (MI) that a pair of predictor random variables (RVs) (X_1,X_2) convey about a target RV Y can have aspects of synergistic information (conveyed only by the joint RV (X_1X_2) , denoted $SI(\{X_1X_2\};Y)$), of redundant information (conveyed identically by both X_1 and X_2 , denoted $I_{\cap}(\{X_1,X_2\};Y)$), and of unique information (conveyed exclusively by either X_1 or X_2 , denoted resp. $UI(\{X_1\};Y)$ and $UI(\{X_2\};Y)$). We have [1]

$$I(X_1X_2;Y) = I_{\cap}(\{X_1, X_2\};Y) + SI(\{X_1X_2\};Y) + UI(\{X_1\};Y) + UI(\{X_2\};Y)$$

$$I(X_i;Y) = I_{\cap}(\{X_1, X_2\};Y) + UI(\{X_i\};Y), \ i = 1,2$$
 (1)

In this note, we show that a recently proposed measure of I_{\cap} inspired by the information-theoretic notion of *common information* (due to Gács and Körner) cannot induce a nonnegative decomposition of $I(X_1X_2;Y)$.

Consider the AND mechanism, $Y = \text{AND}(X_1, X_2)$, where $X_i = \text{Bernoulli}(\frac{1}{2})$, i = 1,2 and joint pmf $p_{X_1X_2Y}$ is such that $p_{(000)} = p_{(010)} = p_{(100)} = p_{(111)} = \frac{1}{4}$. The decomposition evinces both synergistic and redundant contributions to the total MI. First note that $X_1 \perp X_2$, but $X_1 \not\perp X_2 | Y$ since $I(X_1; X_2 | Y) = +.189 \neq 0$. Fixing Y induces correlations between X_1 and X_2 when there was none to start with. The induced correlations are the source of positive synergy. The redundancy can be explained by noting that if either $X_1 = 0$ or $X_2 = 0$, then both X_1 and X_2 can exclude the possibility of Y = 1 with probability of agreement one. Hence the latter is nontrivial information shared between X_1 and X_2 . For independent X_1 and X_2 , when one can attribute any nonzero redundancy entirely to the mechanism, there is some consensus that $I_{\cap}(\{X_1, X_2\}; Y) = \frac{3}{4}\log \frac{4}{3} = +.311$ and $SI(\{X_1X_2\}; Y) = +.5$ [2].

Given two RVs (X,Y), Gács and Körner (GK) defined the notion of a common RV to capture the dependence between X and Y and showed that in general, common information does not account for all the mutual information between X and Y. A measure of I_{\cap} was defined in [2] to measure how well the redundancy that X_1 and X_2 share about Y can be captured by a RV.

$$I_{\cap}(\{X_1, X_2\}; Y) := \max_{\substack{Q: \ Q - X_1 - Y \\ Q - X_2 - Y}} I(Q; Y), \tag{2}$$

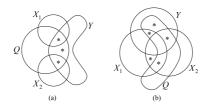


Figure 1: I-diagrams for proof of Lemma 1. Denoting the I-Measure of RVs (Q, X_1, X_2, Y) by μ^* , the atoms on which μ^* vanishes are marked by an asterisk.

where we consider only X_1 , X_2 and Y with finite alphabets $\mathcal{X}_1, \mathcal{X}_2$ and \mathcal{Y} resp. and it suffices to restrict ourselves to $p_{Q|X_1X_2Y}$ with alphabet \mathcal{Q} such that $|\mathcal{Q}| \leq |\mathcal{X}_1||\mathcal{X}_2||\mathcal{Y}| + 3$. Intuitively, if Q specifies the optimal redundant RV, then conditioning on any predictor X_i should remove all the redundant information about Y, i.e., $I(Q;Y|X_i) = 0$, i = 1,2. We show that for independent X_1 and X_2 , if Y is a function of X_1 and X_2 when any positive redundancy can be attributed solely to the function (e.g., as in the AND mechanism above), I_{\cap} defined as per (2) fails to capture a nonnegative decomposition.

For finite RVs, there is a one-to-one correspondence between Shannon's information measures and a signed measure μ^* over sets, called the *I*-measure. We denote the *I*-Measure of RVs (Q, X_1, X_2, Y) by μ^* . We use X to also label the corresponding set in the Information or *I*-diagram. The *I*-diagrams in Fig. 1 are valid diagrams since the sets Q, X_1, X_2, Y intersect each other generically and the region representing the set Q splits each atom into two smaller ones.

Lemma 1. (a) If $X_1 \perp X_2$, then $I_{\cap}(\{X_1,X_2\};Y) = 0$. (b) If $X_1 - Y - X_2$, then $SI(\{X_1X_2\};Y) \leq 0$.

Proof. (a) The atoms on which μ^* vanishes when the Markov chains $Q - X_1 - Y$ and $Q - X_2 - Y$ hold and $X_1 \perp X_2$ are shown in the generic *I*-diagram in Fig. 1(a); $\mu^*(Q \cap Y) = 0$ which gives (a).

(b) The atoms on which μ^* vanishes when the Markov chains $Q-X_1-Y$, $Q-X_2-Y$ and X_1-Y-X_2 hold are shown in the I-diagram in Fig. 1(b). In general, for the atom $X_1\cap X_2\cap Y$, μ^* can be negative. However, since X_1-Y-X_2 is a Markov chain by assumption, we have $\mu^*(X_1\cap X_2\cap Y)=\mu^*(X_1\cap X_2)\geq 0$. Then $\mu^*(Q\cap Y)\leq \mu^*(X_1\cap X_2)$, which gives $I_{\cap}(\{X_1,X_2\};Y)\leq I(X_1;X_2)$. From (1), if X_1-Y-X_2 , then the derived synergy measure is $SI(\{X_1X_2\};Y)=I_{\cap}(\{X_1,X_2\};Y)-I(X_1;X_2)\leq 0$ which gives the desired claim.

References

- [1] P. L. Williams and R. D. Beer (2010), Nonnegative decomposition of multivariate information, arXiv:1004.2515.
- [2] V. Griffith, T. Ho (2015), Quantifying redundant information in predicting a target random variable, *Entropy*, vol. 17, no. 7, pp. 4644-4653.