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The total mutual information (MI) that a pair of predictor random variables (RVs)
(X1,X2) convey about a target RV Y can have aspects of synergistic information (con-
veyed only by the joint RV (X;X5), denoted ST({X1X2};Y)), of redundant informa-
tion (conveyed identically by both X; and X, denoted In({X1,X2};Y)), and of unique
information (conveyed exclusively by either X; or X, denoted resp. UI({X;};Y") and
UI({X2};Y)). We have [1]

I(X1X2;Y) = In({ X1, X2 15Y) + SI{ X1 Xo 1Y) + UI({ X1 1Y) + UI({ X2 1Y)

In this note, we show that a recently proposed measure of I inspired by the information-
theoretic notion of common information (due to Gacs and Korner) cannot induce a
nonnegative decomposition of 7(X;Xs;Y).

Consider the AND mechanism, ¥ = AND(X;,X5), where X; = Bernoulli(%)
i = 1,2 and joint pmf px, x,y is such that poo) = po10) = P100) = P111) = i
The decomposition evinces both synergistic and redundant contributions to the total
MI. First note that X; L Xo, but X7 £ X5]Y since I(X71;X2]Y) = +.189 # 0. Fix-
ing Y induces correlations between X; and Xs when there was none to start with.
The induced correlations are the source of positive synergy. The redundancy can be
explained by noting that if either X; = 0 or X5 = 0, then both X; and X5 can
exclude the possibility of Y = 1 with probability of agreement one. Hence the latter
is nontrivial information shared between X; and X5. For independent X; and Xo,
when one can attribute any nonzero redundancy entirely to the mechanism, there is
some consensus that In({X1,X2};Y) = 3logs = +.311 and SI({X; X, };Y) = +.5 [2].

Given two RVs (XY, Gécs and Korner (GK) defined the notion of a common RV
to capture the dependence between X and Y and showed that in general, common
information does not account for all the mutual information between X and Y. A
measure of In was defined in [2] to measure how well the redundancy that X; and
X5 share about Y can be captured by a RV.
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In({X1,Xo1Y) = | max  I(QY), (2)
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Figure 1: I-diagrams for proof of Lemma 1. Denoting the I-Measure of RVs
(Q,X1,X2,Y) by u*, the atoms on which p* vanishes are marked by an asterisk.

where we consider only X7, X5 and Y with finite alphabets X;,X5 and ) resp.
and it suffices to restrict ourselves to PQ|x, X,y With alphabet Q such that |Q] <
|X1|]X2]| Y| + 3. Intuitively, if @ specifies the optimal redundant RV, then condition-
ing on any predictor X; should remove all the redundant information about Y, i.e.,
I1(Q;Y|X;) =0, i =1,2. We show that for independent X; and X5, if Y is a function
of X7 and X5 when any positive redundancy can be attributed solely to the func-
tion (e.g., as in the AND mechanism above), In defined as per (2) fails to capture a
nonnegative decomposition.

For finite RVs, there is a one-to-one correspondence between Shannon’s informa-
tion measures and a signed measure p* over sets, called the I-measure. We denote
the I-Measure of RVs (Q,X1,X5,Y) by pu*. We use X to also label the corresponding
set in the Information or I-diagram. The I-diagrams in Fig. 1 are valid diagrams
since the sets Q,X1,X5,Y intersect each other generically and the region representing
the set @ splits each atom into two smaller ones.

Lemma 1. (a) If X; L Xo, then In({X1,X2}Y) = 0. (b) If X1 — Y — Xy, then

Proof. (a)The atoms on which u* vanishes when the Markov chains @ — X; — Y and
Q — X5 — Y hold and X; L X5 are shown in the generic /-diagram in Fig. 1(a);
p*(@NY) =0 which gives (a).

(b)The atoms on which p* vanishes when the Markov chains @ — X; —Y, Q — Xo —Y
and X; — Y — X5 hold are shown in the I-diagram in Fig. 1(b). In general, for the
atom X7 NXoNY, u* can be negative. However, since X; —Y — X is a Markov chain
by assumption, we have p*(X; N X2 NY) = p* (X1 N X3) > 0. Then p*(QNY) <
w* (X1 N Xg), which gives In({X1,X2};Y) < I(X31;X3). From (1), if X3 —Y — X,
then the derived synergy measure is ST({X1X2};Y) = In({X1,X2 1Y) —1(X1;X2) <0
which gives the desired claim. O
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