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We consider the a-projection from a point p on a dually flat manifold S to a
submanifold M C S, which is a fundamental procedure in statistical inference. Since
the a-projection can be found by minimizing an a-divergence[l], gradient descent type
algorithms are often used. However, in some applications, the derivative of divergence
is not available or numerically unstable. In this poster, we propose a simple and robust
algorithm without calculating the derivative of divergence.

The algorithm is based on the Pythagorian theorem for dually flat manifold. Sup-
pose {p;}i=1,..k € S are represented by —a-affine coordinate system, they define the
—a-flat submanifold M by their affine combinations, M = {Zle 0:p; | Zle 0; =1}.
Let ¢ € M be a candidate of the a-projection of p € S. When ¢ is actually the a-
projection, the Pythagorian theorem holds

T :D(a)(pv Q) +D(Oé)(q,pz) 7D(a)(p7p1) =0. (1)

If r; is more than or less than zero, it means that the a-geodesic connecting p and ¢
does not intersect orthogonally to M.

Based on this fact, the proposed algorithm increases 6; when r; > 0 while it
decreases 0; when r; < 0. In particular when we can assume all 6;’s are nonnegative,
0; can be updated by 91@“) = Hgt)f(ri), where f(r) is a positive and monotonically
increasing function such that f(0) = 1. After the update, 6;’s are normalized so that
S L6 =1.

As applications of the proposed algorithm, we consider two problems: nonpara-
metric e-mixture estimation and nonnegative matrix factorization.



The e-mixture is defined as an exponential mixture of k distributions {p;(x)},

k k
p(z;0) = exp <Z 0;log pi(z) — b(9)> ) Zai =1, 6; >0, (2)
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where b(6) is a normalization factor. Compared to an ordinary mixture 3 6;p;(z), the
e-mixture has advantages that it belongs to exponential families and it satisfies the
maximum entropy principle. We applied the e-mixture modeling to a transfer learning
problem, where we have only a small number of samples for a target task while a lot of
samples are given for similar tasks. The problem is to find the m-projection (o = —1)
of p(z) representing the target data to an e-flat submanifold (o = 1) defined by a set
of e-mixtures of data distributions {p;(x)};=1, .. r corresponding to the data of similar
tasks. We consider the problem in a nonparametric setting, where p(z) and p;(z)’s are
empirical distributions. However, since the derivative of divergence is not available in
the nonparametric setting, we apply the proposed algorithm to estimate 6;’s by using
a characterization of e-mixture[2] and a nonparametric estimation of divergence[3].
Nonnegative matrix factorization (NMF) is a method for dimension reduction,
where data matrix X is approximated by a product of low rank matrices W and H,
and all components of X, W, H are nonnegative. Letting IT be the column-wise L
normalization operator, II(X) = II(W)II(H) holds if X = WH. The normalized
version of NMF is known as a topic model used in natural language processing. Since
the normalized column can be regarded as a probability vector, the NMF is formulated
as a fitting problem of an m-flat submanifold[4]. This problem can be solved by
alternating e-projections. Exising methods of NMF[5] are numerically unstable when
zero components are included in W or H because of the logarithm of zero. To avoid
the unstability, we apply the proposed algorithm to estimate the matrices W and H.
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