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We consider the α-projection from a point p on a dually flat manifold S to a
submanifoldM⊂ S, which is a fundamental procedure in statistical inference. Since
the α-projection can be found by minimizing an α-divergence[1], gradient descent type
algorithms are often used. However, in some applications, the derivative of divergence
is not available or numerically unstable. In this poster, we propose a simple and robust
algorithm without calculating the derivative of divergence.

The algorithm is based on the Pythagorian theorem for dually flat manifold. Sup-
pose {pi}i=1,...,k ∈ S are represented by −α-affine coordinate system, they define the

−α-flat submanifoldM by their affine combinations,M = {
∑k
i=1 θipi |

∑k
i=1 θi = 1}.

Let q ∈ M be a candidate of the α-projection of p ∈ S. When q is actually the α-
projection, the Pythagorian theorem holds

ri = D(α)(p, q) +D(α)(q, pi)−D(α)(p, pi) = 0. (1)

If ri is more than or less than zero, it means that the α-geodesic connecting p and q
does not intersect orthogonally to M.

Based on this fact, the proposed algorithm increases θi when ri > 0 while it
decreases θi when ri < 0. In particular when we can assume all θi’s are nonnegative,

θi can be updated by θ
(t+1)
i = θ

(t)
i f(ri), where f(r) is a positive and monotonically

increasing function such that f(0) = 1. After the update, θi’s are normalized so that∑k
i=1 θi = 1.
As applications of the proposed algorithm, we consider two problems: nonpara-

metric e-mixture estimation and nonnegative matrix factorization.



The e-mixture is defined as an exponential mixture of k distributions {pi(x)},

p(x; θ) = exp

(
k∑
i=1

θi log pi(x)− b(θ)

)
,

k∑
i=1

θi = 1, θi ≥ 0, (2)

where b(θ) is a normalization factor. Compared to an ordinary mixture
∑
θipi(x), the

e-mixture has advantages that it belongs to exponential families and it satisfies the
maximum entropy principle. We applied the e-mixture modeling to a transfer learning
problem, where we have only a small number of samples for a target task while a lot of
samples are given for similar tasks. The problem is to find the m-projection (α = −1)
of p(x) representing the target data to an e-flat submanifold (α = 1) defined by a set
of e-mixtures of data distributions {pi(x)}i=1,...,k corresponding to the data of similar
tasks. We consider the problem in a nonparametric setting, where p(x) and pi(x)’s are
empirical distributions. However, since the derivative of divergence is not available in
the nonparametric setting, we apply the proposed algorithm to estimate θi’s by using
a characterization of e-mixture[2] and a nonparametric estimation of divergence[3].

Nonnegative matrix factorization (NMF) is a method for dimension reduction,
where data matrix X is approximated by a product of low rank matrices W and H,
and all components of X,W,H are nonnegative. Letting Π be the column-wise L1

normalization operator, Π(X) = Π(W )Π(H) holds if X = WH. The normalized
version of NMF is known as a topic model used in natural language processing. Since
the normalized column can be regarded as a probability vector, the NMF is formulated
as a fitting problem of an m-flat submanifold[4]. This problem can be solved by
alternating e-projections. Exising methods of NMF[5] are numerically unstable when
zero components are included in W or H because of the logarithm of zero. To avoid
the unstability, we apply the proposed algorithm to estimate the matrices W and H.
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